Abstract

We show that fiber Bragg gratings can extend an optical continuum to spectral regions where continuum generation is very weak. Highly nonlinear fibers with Bragg grating resonances at 700, 750, and 800nm were pumped with 70fs pulses at 1580nm and exhibited enhancement peaks up to 25dB above the extremely weak continuum at these wavelengths, normally more than 40dB below the average power in the continuum. We show that the grating peaks may be computed by treating the continuum pulse as an undepleted pump and including the grating dispersion as a phase-matching term.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
    [CrossRef]
  2. C. L. Tang and P. B. Bey, IEEE J. Quantum Electron. QE-9, 9 (1973).
    [CrossRef]
  3. M. J. Steel and C. M. de Sterke, J. Opt. Soc. Am. B 12, 2445 (1995).
    [CrossRef]
  4. J. P. van der Ziel and M. Ilegems, Appl. Phys. Lett. 28, 437 (1976).
    [CrossRef]
  5. J. Martorell, R. Vilaseca, and R. Corbalán, Appl. Phys. Lett. 70, 702 (1997).
    [CrossRef]
  6. P. P. Markowicz, V. K. S. Hsiao, H. Tiryaki, A. N. Cartwright, P. N. Prasad, K. Dolgaleva, N. N. Lepeshkin, and R. W. Boyd, Appl. Phys. Lett. 87, 51102 (2005).
    [CrossRef]
  7. P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
    [CrossRef]
  8. K. Kim, S. A. Diddams, P. S. Westbrook, J. W. Nicholson, and K. S. Feder, Opt. Lett. 31, 277 (2006).
    [CrossRef] [PubMed]
  9. P. S. Westbrook and J. W. Nicholson, Opt. Express 14, 7610 (2006).
    [CrossRef] [PubMed]
  10. C. G. Joergensen, T. Veng, L. Gruner-Nielsen, and M. Yan, in Proceedings of the 29th European Conference on Optical Communications (2003), p. 556.
  11. F. Tauser, A. Leitenstorfer, and W. Zinth, Opt. Express 11, 594 (2003).
    [CrossRef] [PubMed]

2006 (2)

2005 (1)

P. P. Markowicz, V. K. S. Hsiao, H. Tiryaki, A. N. Cartwright, P. N. Prasad, K. Dolgaleva, N. N. Lepeshkin, and R. W. Boyd, Appl. Phys. Lett. 87, 51102 (2005).
[CrossRef]

2004 (1)

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

2003 (1)

1997 (1)

J. Martorell, R. Vilaseca, and R. Corbalán, Appl. Phys. Lett. 70, 702 (1997).
[CrossRef]

1995 (1)

1976 (1)

J. P. van der Ziel and M. Ilegems, Appl. Phys. Lett. 28, 437 (1976).
[CrossRef]

1973 (1)

C. L. Tang and P. B. Bey, IEEE J. Quantum Electron. QE-9, 9 (1973).
[CrossRef]

1970 (1)

N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

Appl. Phys. Lett. (5)

J. P. van der Ziel and M. Ilegems, Appl. Phys. Lett. 28, 437 (1976).
[CrossRef]

J. Martorell, R. Vilaseca, and R. Corbalán, Appl. Phys. Lett. 70, 702 (1997).
[CrossRef]

P. P. Markowicz, V. K. S. Hsiao, H. Tiryaki, A. N. Cartwright, P. N. Prasad, K. Dolgaleva, N. N. Lepeshkin, and R. W. Boyd, Appl. Phys. Lett. 87, 51102 (2005).
[CrossRef]

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. L. Tang and P. B. Bey, IEEE J. Quantum Electron. QE-9, 9 (1973).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (1)

Other (1)

C. G. Joergensen, T. Veng, L. Gruner-Nielsen, and M. Yan, in Proceedings of the 29th European Conference on Optical Communications (2003), p. 556.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Light generation beyond a continuum edge. (a) Observed peaks near gratings at 700, 750, and 800 nm ; (b) comparison of a 700 nm grating peak and linear grating transmission.

Fig. 2
Fig. 2

(a) D and D + δ β f b g versus wavelength. (b) Full NLSE simulations using Eq. (1) with D and D + δ β f b g . (c) D and D + δ β f b g near Bragg wavelength. (d) Simulated grating enhancement computed using the undepleted pump approximation [Eq. (3)] and the full NLSE with grating dispersion (Eq. (1)). Circles show each simulation point.

Fig. 3
Fig. 3

(a) Continuum power versus z. (b) Source phase ϕ N L versus z. (c) Spectrum showing grating enhancement. Simulations are for no grating (short-dashed curves), δ n = 0.0045 (dashed curves) and δ n = 0.007 (solid curves). Circles in (c) indicate wavelength for which z dependence is plotted in (a) and (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A 0 ( ω , z ) z = i D ( ω ) A 0 ( ω , z ) + P N L ( ω , z ) .
A 0 = A 0 z = 0 e i D z + 0 z P N L ( ω , z ) e i D ( z z ) d z .
A ( ω , L ) A 0 ( ω , 0 ) e i ( D + δ β f b g ) L + 0 L P N L e i ( D + δ β f b g ) ( z L ) d z ,

Metrics