Abstract

We experimentally investigate the performance of a commercial tapered amplifier diode operating in a pulsed-current mode with a peak current that is significantly higher than the specified maximum continuous current. For a tapered amplifier rated at 500mW of continuous power, we demonstrate 2.6W of peak optical output power with 15mW of injection light for 200μs, 7A current pulses. Different failure mechanisms for the tapered amplifier, including thermal and optical damage, are identified under these conditions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. Bendelli, K. Komori, S. Arai, and Y. Suematsu, IEEE Photon. Technol. Lett. 3, 42 (1991).
    [CrossRef]
  2. J. N. Walpole, E. S. Kintzer, S. R. Chinn, C. A. Wang, and L. J. Missaggia, Appl. Phys. Lett. 61, 740 (1992).
    [CrossRef]
  3. G. Ferrari, M. O. Mewes, F. Schreck, and C. Salomon, Opt. Lett. 24, 151 (1999).
    [CrossRef]
  4. F. C. Cruz, M. C. Stowe, and J. Ye, Opt. Lett. 31, 1337 (2006).
    [CrossRef] [PubMed]
  5. K. Takase, Ph.D. dissertation (Stanford University, 2007).
  6. H. Stange, Eagleyard Photonics, Berlin 12489, Germany (personal communication, 2007).
  7. M. A. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181 (1991).
    [CrossRef] [PubMed]
  8. L. Goldberg, D. Mehuys, M. R. Surette, and D. C. Hall, IEEE J. Quantum Electron. 29, 2028 (1993).
    [CrossRef]
  9. R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. L. Coq, A. Aspect, and P. Bouyer, Rev. Sci. Instrum. 77, 033105 (2006).
    [CrossRef]

2006 (2)

F. C. Cruz, M. C. Stowe, and J. Ye, Opt. Lett. 31, 1337 (2006).
[CrossRef] [PubMed]

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. L. Coq, A. Aspect, and P. Bouyer, Rev. Sci. Instrum. 77, 033105 (2006).
[CrossRef]

1999 (1)

1993 (1)

L. Goldberg, D. Mehuys, M. R. Surette, and D. C. Hall, IEEE J. Quantum Electron. 29, 2028 (1993).
[CrossRef]

1992 (1)

J. N. Walpole, E. S. Kintzer, S. R. Chinn, C. A. Wang, and L. J. Missaggia, Appl. Phys. Lett. 61, 740 (1992).
[CrossRef]

1991 (2)

G. Bendelli, K. Komori, S. Arai, and Y. Suematsu, IEEE Photon. Technol. Lett. 3, 42 (1991).
[CrossRef]

M. A. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181 (1991).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. N. Walpole, E. S. Kintzer, S. R. Chinn, C. A. Wang, and L. J. Missaggia, Appl. Phys. Lett. 61, 740 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Goldberg, D. Mehuys, M. R. Surette, and D. C. Hall, IEEE J. Quantum Electron. 29, 2028 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Bendelli, K. Komori, S. Arai, and Y. Suematsu, IEEE Photon. Technol. Lett. 3, 42 (1991).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

M. A. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. L. Coq, A. Aspect, and P. Bouyer, Rev. Sci. Instrum. 77, 033105 (2006).
[CrossRef]

Other (2)

K. Takase, Ph.D. dissertation (Stanford University, 2007).

H. Stange, Eagleyard Photonics, Berlin 12489, Germany (personal communication, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of the experimental setup. The fiberport on the left collimates the injection light, which passes through a cleanup polarizer and a wave plate. Two small mirrors and an aspheric lens couple the light into the TA. The output beam is collimated by a second aspheric lens and a cylindrical lens, deflected by a 45° mirror, and detected after passing through three absorptive ND filters. For fiber-coupling the output, the mirror is removed and the beam follows the dashed path shown. A schematic of the TA mounted in the copper housing is shown with the plate containing the output collimating aspheric lens removed to make the TA visible.

Fig. 2
Fig. 2

(a) Peak output power versus pulsed current. (b) Time dependence of the output power at short time scales shown for a 6 A current pulse. The current rise time is < 10 μ s , and otherwise flat. (c) Time dependence over longer time scales for 7 A of current. The peak output power at short time scales reaches a value of 2.6 W (unresolved in this figure) and then decreases gradually due to heating effects. The chirped oscillations on the detected power are due to etalon and heating effects in the absorptive ND filters.

Metrics