Abstract

Surface neural activity has been widely visualized using optical intrinsic signal imaging (OISI) from various cortical sensory areas. OISI of the cortical surface with a CCD camera gives integrated information across a depth of a few hundred micrometers. We visualize depth-resolved activation patterns of cat primary visual cortex by functional optical coherence tomography (fOCT). A comparison of the depth-integrated results of fOCT maps with the optical intrinsic signal profiles shows fairly good agreement. Our results reveal layer-specific activation patterns and indicate that the activation was not homogeneous.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Bonhoeffer, A. Grinvald, in Brain Mapping-The Methods, A.W.Toga and J.C.Mazziotta, eds. (Academic, 1996), pp. 55-97.
  2. D. Y. Ts'o, R. D. Frostig, E. E. Leike, and A. Grinvald, Science 249, 417 (1990).
    [CrossRef] [PubMed]
  3. M. Tanifuji, in The Primate Visual System, J.H.Kaas and C.E.Collins, eds. (CRC, 2004), pp. 345-363.
  4. D. H. Hubel, Eye, Brain and Vision (Scientific American Library, 1995).
  5. B. E. Bouma and G. J. Tearney, Handbook Of Optical Cohrence Tomography (Marcel Dekker, 2002).
  6. R. Uma Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, J. Neurosci. Methods 124, 83 (2003).
    [CrossRef] [PubMed]
  7. R. Uma Maheswari, H. Kadono, R. Homma, and M. Tanifuji, Proc. SPIE 5140, 77 (2003).
    [CrossRef]
  8. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, Opt. Lett. 28, 1218 (2003).
    [CrossRef] [PubMed]
  9. X.-C. Yao, A. Yamauchi, B. Perry, and J. S. George, Appl. Opt. 44, 2019 (2005).
    [CrossRef] [PubMed]
  10. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, Proc. Natl. Acad. Sci. 103, 5066 (2006).
    [CrossRef] [PubMed]
  11. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, Opt. Lett. 31, 2308 (2006).
    [CrossRef] [PubMed]
  12. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, Opt. Lett. 31, 3459 (2006).
    [CrossRef] [PubMed]
  13. T. Bonhoeffer and A. Grinvald, J. Neurosci. 13, 4157 (1993).
    [PubMed]

2006 (3)

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, Proc. Natl. Acad. Sci. 103, 5066 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, Opt. Lett. 31, 2308 (2006).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, Opt. Lett. 31, 3459 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (3)

R. Uma Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, J. Neurosci. Methods 124, 83 (2003).
[CrossRef] [PubMed]

R. Uma Maheswari, H. Kadono, R. Homma, and M. Tanifuji, Proc. SPIE 5140, 77 (2003).
[CrossRef]

M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, Opt. Lett. 28, 1218 (2003).
[CrossRef] [PubMed]

1993 (1)

T. Bonhoeffer and A. Grinvald, J. Neurosci. 13, 4157 (1993).
[PubMed]

1990 (1)

D. Y. Ts'o, R. D. Frostig, E. E. Leike, and A. Grinvald, Science 249, 417 (1990).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. Neurosci. (1)

T. Bonhoeffer and A. Grinvald, J. Neurosci. 13, 4157 (1993).
[PubMed]

J. Neurosci. Methods (1)

R. Uma Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, J. Neurosci. Methods 124, 83 (2003).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. Natl. Acad. Sci. (1)

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, Proc. Natl. Acad. Sci. 103, 5066 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. Uma Maheswari, H. Kadono, R. Homma, and M. Tanifuji, Proc. SPIE 5140, 77 (2003).
[CrossRef]

Science (1)

D. Y. Ts'o, R. D. Frostig, E. E. Leike, and A. Grinvald, Science 249, 417 (1990).
[CrossRef] [PubMed]

Other (4)

M. Tanifuji, in The Primate Visual System, J.H.Kaas and C.E.Collins, eds. (CRC, 2004), pp. 345-363.

D. H. Hubel, Eye, Brain and Vision (Scientific American Library, 1995).

B. E. Bouma and G. J. Tearney, Handbook Of Optical Cohrence Tomography (Marcel Dekker, 2002).

T. Bonhoeffer, A. Grinvald, in Brain Mapping-The Methods, A.W.Toga and J.C.Mazziotta, eds. (Academic, 1996), pp. 55-97.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A, Schematic of the experimental system used. B, Exposed cortical surface of cat visual cortex and with C, an overlay of binarized activation map. BBS, broadband source; AOM, acousto-optic modulator; PC, polarization controller; M, mirror; O, objective lens. In C the dark and light patches represent, respectively, the activated regions for horizontal and vertical gratings, and the green lines indicate the region of the OCT scan. To reduce the respiratory fluctuation, data acquisition was done in synchronization with the heartbeat and respiration. The animal experimental protocol was approved by the Experimental Animal Committee of the RIKEN Institute, which follows the guidelines of the National Institutes of Health.

Fig. 2
Fig. 2

Results of A, an OCT scan and B, a functional OCT map obtained across the line indicated in Figs. 1B and C. In B, the red and blue patches, respectively, represent the activated regions for horizontal and vertical gratings.

Fig. 3
Fig. 3

Consistency of the OISI result with the integrated result of fOCT corresponding to correlation coefficients of A, 0.68 and B, 0.3. In A, the green line indicates the variation of OISI across the line indicated in Fig. 1C, and the red line is obtained by calculating the functional signal from integrating the OCT scans across the full scanned depth range of Fig. 2A. B is another example obtained from a different cat.

Tables (1)

Tables Icon

Table 1 Correlation Coefficients Between the Profiles Obtained by the OISI and fOCT Intensity Profiles Obtained from Different Scan Positions of a Single Cat under Two Different Stimulus Conditions

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ s ( x , d , t ) = R s post ( x , d , t ) prescans R s pre ( x , d , t ) .
γ diff ( x , d ) = γ grating ( x , d ) γ control ( x , d ) .

Metrics