Abstract

A 2W cw laser diode (LD) with an external cavity produced by a reflecting volume Bragg grating (VBG) demonstrated a spectral width of 7GHz (full width at half-maximum) at 780nm. The device output power exceeded 90% of the output power of the free-running LD. The emission wavelength was tuned over a 300pm range by thermal control of the VBG. Rb vapor was shown to absorb more than 95% of the laser radiation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, Opt. Lett. 28, 2336 (2003).
    [Crossref] [PubMed]
  2. R. J. Knize, T. Ehrenreich, and B. Zhdanov, J. Directed Energy 2, 145 (2006).
  3. A. Sharma, N. D. Bhaskar, Y. Q. Lu, and W. Happer, Appl. Phys. Lett. 39, 209 (1981).
    [Crossref]
  4. R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, Opt. Lett. 31, 353 (2006).
    [Crossref] [PubMed]
  5. Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, Phys. Lett. A 360, 659 (2007).
    [Crossref]
  6. Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88. 141112 (2006).
    [Crossref]
  7. T. Earles, L. J. Mawst, and D. Botez, Appl. Phys. Lett. 73, 2072 (1998).
    [Crossref]
  8. E. Babcock, B. Chann, I. Nelson, and T. Walker, Appl. Opt. 44, 3098 (2005).
    [Crossref] [PubMed]
  9. C. L. Talbot, M. E. J. Friese, D. Wang, I. Brereton, N. R. Heckenb, and H. Rubinsztein-DunlopAppl. Opt. 44, 6264 (2005).
    [Crossref] [PubMed]
  10. Y. Zheng and H. Kan, Opt. Lett. 30, 2424 (2005).
    [Crossref] [PubMed]
  11. B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, Electron. Lett. 43, 221 (2007).
    [Crossref]
  12. L. S. Meng, B. Nizamov, P. Madasamy, J. K. Brasseur, T. Henshaw, and D. K. Neumann, Opt. Express . 14, 10469 (2006).
    [Crossref] [PubMed]
  13. O. M. Efimov, L. B. Glebov, and V. Smirnov, 'High efficiency volume diffractive elements in photo-thermal-refractive glass,' U.S. patent 6,673,497 (January 6, 2004).
  14. O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, 'Process for production of high efficiency volume diffractive elements in photo-thermal-refractive glass,' U.S. patent 6,586,141 (July 1, 2003).
  15. G. Venus, A. Sevian, V. Smirnov, and L. Glebov, Proc. SPIE 5711, 166 (2005).
    [Crossref]
  16. L. B. Glebov, Proc. SPIE 6216, 621601 (2006).
    [Crossref]
  17. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, Opt. Lett. 29, 1891 (2004).
    [Crossref] [PubMed]
  18. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonics Integrated Circuits (Wiley, 1995).

2007 (2)

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, Phys. Lett. A 360, 659 (2007).
[Crossref]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, Electron. Lett. 43, 221 (2007).
[Crossref]

2006 (5)

L. B. Glebov, Proc. SPIE 6216, 621601 (2006).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88. 141112 (2006).
[Crossref]

R. J. Knize, T. Ehrenreich, and B. Zhdanov, J. Directed Energy 2, 145 (2006).

R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, Opt. Lett. 31, 353 (2006).
[Crossref] [PubMed]

L. S. Meng, B. Nizamov, P. Madasamy, J. K. Brasseur, T. Henshaw, and D. K. Neumann, Opt. Express . 14, 10469 (2006).
[Crossref] [PubMed]

2005 (4)

2004 (1)

2003 (1)

1998 (1)

T. Earles, L. J. Mawst, and D. Botez, Appl. Phys. Lett. 73, 2072 (1998).
[Crossref]

1981 (1)

A. Sharma, N. D. Bhaskar, Y. Q. Lu, and W. Happer, Appl. Phys. Lett. 39, 209 (1981).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88. 141112 (2006).
[Crossref]

T. Earles, L. J. Mawst, and D. Botez, Appl. Phys. Lett. 73, 2072 (1998).
[Crossref]

A. Sharma, N. D. Bhaskar, Y. Q. Lu, and W. Happer, Appl. Phys. Lett. 39, 209 (1981).
[Crossref]

Electron. Lett. (1)

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, Electron. Lett. 43, 221 (2007).
[Crossref]

J. Directed Energy (1)

R. J. Knize, T. Ehrenreich, and B. Zhdanov, J. Directed Energy 2, 145 (2006).

Opt. Express (1)

Opt. Lett. (4)

Phys. Lett. A (1)

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, Phys. Lett. A 360, 659 (2007).
[Crossref]

Proc. SPIE (2)

G. Venus, A. Sevian, V. Smirnov, and L. Glebov, Proc. SPIE 5711, 166 (2005).
[Crossref]

L. B. Glebov, Proc. SPIE 6216, 621601 (2006).
[Crossref]

Other (3)

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonics Integrated Circuits (Wiley, 1995).

O. M. Efimov, L. B. Glebov, and V. Smirnov, 'High efficiency volume diffractive elements in photo-thermal-refractive glass,' U.S. patent 6,673,497 (January 6, 2004).

O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, 'Process for production of high efficiency volume diffractive elements in photo-thermal-refractive glass,' U.S. patent 6,586,141 (July 1, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Emission spectra of free-running (dotted curve) and volume Bragg (solid curve) diode lasers in semilog scale. (b) Emission spectrum of a VOBLA in linear scale.

Fig. 2
Fig. 2

Emission spectrum of the VOBLA measured by a scanning confocal Fabry–Perot interferometer with 10 GHz free spectral range.

Fig. 3
Fig. 3

Cw output power of a free-running (hollow square) and a volume Bragg (solid square) diode laser versus driving current.

Fig. 4
Fig. 4

(a) Emission spectra of a volume Bragg diode laser at different grating temperatures. (b) Absorption of VOBLA radiation by an Rb cell versus central wavelength of emission.

Metrics