Abstract

We study the effects of metal-coated fiber near-field probes on the performance of nanophotonic devices. Employing a heterodyne near-field scanning optical microscope and analyzing transmission characteristics, we find that a metal-coated probe can typically introduce a 3dB intensity loss and a 0.2rad phase shift during characterization of a straight waveguide made in a silicon-on-insulator system. In resonant nanophotonic structures such as a 5μm radius microring resonator, we demonstrate that the probe induces a 1nm shift in resonant wavelength and decreases the resonator quality factor, Q, from 1100 to 480.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  2. J. R. Guest, T. H. Stievater, G. Chen, E. A. Tabak, B. G. Orr, D. G. Steel, D. Gammon, and D. S. Katzer, Science 293, 2224 (2001).
    [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, I. I. Smolyaninov, and A. V. Zayats, Phys. Rev. B 51, 17916 (1995).
    [CrossRef]
  4. M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig, and Y. Fainman, Opt. Express 14, 1643 (2006).
    [CrossRef] [PubMed]
  5. L. Novotny, D. W. Pohl, and P. Regli, J. Opt. Soc. Am. A 11, 1768 (1994).
    [CrossRef]
  6. A. Castiaux, A. Dereux, J.-P. Vigneron, C. Girard, and O. J. F. Martin, Ultramicroscopy 60, 1 (1995).
    [CrossRef]
  7. M. Hammer and R. Stoffer, J. Lightwave Technol. 23, 1956 (2005).
    [CrossRef]
  8. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, Phys. Rev. Lett. 95, 153904 (2005).
    [CrossRef] [PubMed]
  9. I. Märki, M. Salt, and H. P. Herzig, Opt. Express 14, 2969 (2006).
    [CrossRef] [PubMed]
  10. B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, Appl. Phys. Lett. 88, 051112 (2006).
    [CrossRef]
  11. W. C. L. Hopman, K. O. van der Werf, A. J. F. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, Opt. Express 14, 8745 (2006).
    [CrossRef] [PubMed]
  12. A. Nesci, and Y. Fainman, Proc. SPIE 5181, 62 (2003).
    [CrossRef]
  13. J. T. Robinson, S. F. Preble, and M. Lipson, Opt. Express 14, 10588 (2006).
    [CrossRef] [PubMed]
  14. J. Niehusmann, A. Vörckel, P. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, Opt. Lett. 29, 2861 (2004).
    [CrossRef]

2006

2005

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

M. Hammer and R. Stoffer, J. Lightwave Technol. 23, 1956 (2005).
[CrossRef]

2004

2003

A. Nesci, and Y. Fainman, Proc. SPIE 5181, 62 (2003).
[CrossRef]

2001

J. R. Guest, T. H. Stievater, G. Chen, E. A. Tabak, B. G. Orr, D. G. Steel, D. Gammon, and D. S. Katzer, Science 293, 2224 (2001).
[CrossRef] [PubMed]

1995

S. I. Bozhevolnyi, I. I. Smolyaninov, and A. V. Zayats, Phys. Rev. B 51, 17916 (1995).
[CrossRef]

A. Castiaux, A. Dereux, J.-P. Vigneron, C. Girard, and O. J. F. Martin, Ultramicroscopy 60, 1 (1995).
[CrossRef]

1994

Appl. Phys. Lett.

B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, Appl. Phys. Lett. 88, 051112 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Rev. B

S. I. Bozhevolnyi, I. I. Smolyaninov, and A. V. Zayats, Phys. Rev. B 51, 17916 (1995).
[CrossRef]

Phys. Rev. Lett.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

Proc. SPIE

A. Nesci, and Y. Fainman, Proc. SPIE 5181, 62 (2003).
[CrossRef]

Science

J. R. Guest, T. H. Stievater, G. Chen, E. A. Tabak, B. G. Orr, D. G. Steel, D. Gammon, and D. S. Katzer, Science 293, 2224 (2001).
[CrossRef] [PubMed]

Ultramicroscopy

A. Castiaux, A. Dereux, J.-P. Vigneron, C. Girard, and O. J. F. Martin, Ultramicroscopy 60, 1 (1995).
[CrossRef]

Other

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Effect of the position of the probe with respect to the center of the waveguide on the measured parameters: (a) amplitude of the optical field collected by the probe, (b) optical field amplitude, (c) optical phase at the output of the waveguide.

Fig. 2
Fig. 2

(a) Schematic diagram describing the experimental geometry; (b) scanning electron microscope micrograph of a microring resonator coupled to bus waveguides.

Fig. 3
Fig. 3

Spectral characteristics of the 5 μ m radius ring resonator device: (a) near-field probe not in contact, (b) near-field probe in contact with bus waveguide, (c) near-field probe in contact with the microring.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

φ tot = 2 π n eff L λ ,
Δ n = Δ φ λ 0 4 π 2 R ,
Δ λ λ 0 = Δ n n eff
1 Q = 1 Q w o p + 1 Q pr ,
Q pr = 4 π 2 R n eff α pr λ 0 ,

Metrics