Abstract

Wave-breaking free pulses generated in passively mode-locked fiber lasers can tolerate a certain cubic phase delay induced by third-order dispersion without losing pulse quality. We demonstrate that the spectral as well as the temporal profile of the pulses become asymmetric. The generated pulses had a pulse energy up to 3.5nJ and could be externally compressed down to 145fs. The fact that the pulses could always be dechirped within 10% of the Fourier limit points out the linearity of the chirp. The pulse asymmetry was also observed in the output coupling characteristic of the mode-locking mechanism.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  2. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, J. Opt. Soc. Am. B 10, 1185 (1993).
    [CrossRef]
  3. C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, Opt. Express 15, 852 (2007).
    [CrossRef] [PubMed]
  4. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, Opt. Lett. 31, 2734 (2006).
    [CrossRef] [PubMed]
  5. L. Sha, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, Opt. Express 13, 4717 (2005).
    [CrossRef]
  6. S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, Opt. Express 13, 4869 (2005).
    [CrossRef] [PubMed]
  7. J. R. Buckley, S. W. Clark, and F. W. Wise, Opt. Lett. 311340 (2006).
    [CrossRef] [PubMed]
  8. Y. Logvin, V. P. Kalosha, and H. Anis, Opt. Express 15, 985 (2007).
    [CrossRef] [PubMed]
  9. F. X. Kaertner, J. Aus der Au, and U. Keller, J. Opt. Soc. Am. B 4, 159 (1998).
  10. A. Ruehl, O. Prochnow, D. Wandt, and D. Kracht, in Conference on Lasers and Electro-Optics, CLEO Europe 2007 (Optical Society of America, 2007), paper CJ1-5-WED.
  11. O. E. Martinez, R. L. Fork, and J. P. Gordon, J. Opt. Soc. Am. B 2, 753 (1985).
    [CrossRef]
  12. V. L. Kalashnikov, E. Podicilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, New J. Phys. 7, 217 (2005).
    [CrossRef]

2007 (2)

2006 (2)

2005 (3)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

1998 (1)

F. X. Kaertner, J. Aus der Au, and U. Keller, J. Opt. Soc. Am. B 4, 159 (1998).

1993 (1)

1985 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: QWP, quarter-wave plate; HWP, half-wave plate; PBS, polarizing beam splitter; ISO, Faraday isolator; HR, highly reflecting mirror; SBR, saturable Bragg reflector; SMF, single-mode fiber; WDM, wavelength-division multiplexer.

Fig. 2
Fig. 2

(a) Optical spectrum (solid curve) and second-order cross-correlation trace with the dechirped pulse (dots). (b) Second-order autocorrelation trace of the dechirped pulse measured (solid curve) and calculated from the spectrum by a Fourier transformation assuming a zero-phase (dashed curve).

Fig. 3
Fig. 3

(a) Output coupling characteristic of the nonlinear polarization evolution for different settings of the NPE wave plates on a logarithmic scale and the derivatives. (b) Shift of the peak wavelength compared with the central wavelength in respect to the third-order dispersion and net group-velocity dispersion, respectively. The measurement shown in Fig. 2 is indicated with the square.

Metrics