Abstract

A novel method to produce optical waveguides is demonstrated for lithium niobate (LiNbO3). It is based on electronic excitation damage by swift ions, i.e., with energies at approximately 1MeVamu or above. The new technique uses high-energy medium-mass ions, such as Cl, with electronic stopping powers above the threshold value for amorphization (56keVnm), reaching the maximum value a few micrometers inside the crystal. At the ultralow fluence regime (10121013cm2) an effective nanostructured medium is obtained that behaves as an optical waveguide where light propagates transversally to the amorphous nanotracks created by every single impact. The method implies a reduction of 4 orders of magnitude with respect to He implantation. The optical waveguides present reasonable losses (10dBcm) and significant second-harmonic generation (SHG) and electro-optic (EO) responses (>50% bulk) for the lowest fluences.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. F. Ziegler, Ion Implantation Technology (North-Holland, 1992).
  2. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
    [CrossRef]
  3. R. V. Schmidt and I. P. Kaminow, Appl. Phys. Lett. 25, 458 (1974).
    [CrossRef]
  4. W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, Opt. Lett. 16, 995 (1991).
    [CrossRef] [PubMed]
  5. M. P. de Micheli, D. B. Ostrowski, Yu. N. Korkhisko, and P. Basi, Insulating Materials for Optoelectronics: New Developments (World-Scientific, 1995).
  6. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, Adv. Phys. 45, 349 (1996).
    [CrossRef]
  7. Properties of Lithium Niobate, EMIS Data Review Series (INSPEC, 2002).
  8. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, Appl. Phys. Lett. 86, 183501 (2005).
    [CrossRef]
  9. A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. Stewart Aitchison, Nucl. Instrum. Methods Phys. Res. B 249, 177 (2006).
    [CrossRef]
  10. B. Canut and S. M. M. Ramos, Radiat. Eff. Defects Solids 145, 1 (1998).
    [CrossRef]
  11. A. Meftah, J. M. Constantini, N. Khalfaoui, S. Boudjadar, J. P. Soquert, F. Studer, and M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 237, 563 (2005).
    [CrossRef]
  12. J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, Appl. Phys. A 81, 1465 (2005).
    [CrossRef]
  13. J. Olivares, A. García-Navarro, G. García, A. Méndez, and F. Agulló-López, Appl. Phys. Lett. 89, 071923 (2006).
    [CrossRef]
  14. J-H. Zollondz and A. Weidinger, Nucl. Instrum. Methods Phys. Res. B 225, 178 (2004).
    [CrossRef]
  15. www.uam.es/cmam
  16. J. Rams and J. M. Cabrera, J. Mod. Opt. 47, 1659 (2000).
  17. A. Méndez, G. De la Paliza, A. García-Cabañes, and J. M. Cabrera, Appl. Phys. B 73, 485 (2001).
  18. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).
    [CrossRef]

2006 (2)

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. Stewart Aitchison, Nucl. Instrum. Methods Phys. Res. B 249, 177 (2006).
[CrossRef]

J. Olivares, A. García-Navarro, G. García, A. Méndez, and F. Agulló-López, Appl. Phys. Lett. 89, 071923 (2006).
[CrossRef]

2005 (3)

A. Meftah, J. M. Constantini, N. Khalfaoui, S. Boudjadar, J. P. Soquert, F. Studer, and M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 237, 563 (2005).
[CrossRef]

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, Appl. Phys. A 81, 1465 (2005).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

2004 (1)

J-H. Zollondz and A. Weidinger, Nucl. Instrum. Methods Phys. Res. B 225, 178 (2004).
[CrossRef]

2001 (1)

A. Méndez, G. De la Paliza, A. García-Cabañes, and J. M. Cabrera, Appl. Phys. B 73, 485 (2001).

2000 (1)

J. Rams and J. M. Cabrera, J. Mod. Opt. 47, 1659 (2000).

1998 (1)

B. Canut and S. M. M. Ramos, Radiat. Eff. Defects Solids 145, 1 (1998).
[CrossRef]

1997 (1)

1996 (1)

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, Adv. Phys. 45, 349 (1996).
[CrossRef]

1991 (1)

1974 (1)

R. V. Schmidt and I. P. Kaminow, Appl. Phys. Lett. 25, 458 (1974).
[CrossRef]

Adv. Phys. (1)

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, Adv. Phys. 45, 349 (1996).
[CrossRef]

Appl. Phys. A (1)

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, Appl. Phys. A 81, 1465 (2005).
[CrossRef]

Appl. Phys. B (1)

A. Méndez, G. De la Paliza, A. García-Cabañes, and J. M. Cabrera, Appl. Phys. B 73, 485 (2001).

Appl. Phys. Lett. (3)

J. Olivares, A. García-Navarro, G. García, A. Méndez, and F. Agulló-López, Appl. Phys. Lett. 89, 071923 (2006).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

R. V. Schmidt and I. P. Kaminow, Appl. Phys. Lett. 25, 458 (1974).
[CrossRef]

J. Mod. Opt. (1)

J. Rams and J. M. Cabrera, J. Mod. Opt. 47, 1659 (2000).

J. Opt. Soc. Am. B (1)

Nucl. Instrum. Methods Phys. Res. B (3)

A. Meftah, J. M. Constantini, N. Khalfaoui, S. Boudjadar, J. P. Soquert, F. Studer, and M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 237, 563 (2005).
[CrossRef]

J-H. Zollondz and A. Weidinger, Nucl. Instrum. Methods Phys. Res. B 225, 178 (2004).
[CrossRef]

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. Stewart Aitchison, Nucl. Instrum. Methods Phys. Res. B 249, 177 (2006).
[CrossRef]

Opt. Lett. (1)

Radiat. Eff. Defects Solids (1)

B. Canut and S. M. M. Ramos, Radiat. Eff. Defects Solids 145, 1 (1998).
[CrossRef]

Other (5)

Properties of Lithium Niobate, EMIS Data Review Series (INSPEC, 2002).

M. P. de Micheli, D. B. Ostrowski, Yu. N. Korkhisko, and P. Basi, Insulating Materials for Optoelectronics: New Developments (World-Scientific, 1995).

J. F. Ziegler, Ion Implantation Technology (North-Holland, 1992).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
[CrossRef]

www.uam.es/cmam

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic depth morphology of the tracks, showing the amorphous core (black) and the surrounding damage halo (dashed) generated after the passage of the ion, which stops approximately where S n is maximum. A schematic light profile (M0) illustrates waveguiding behavior that is generated in the top effective medium layer (emphasized with gray color). (b) Electronic, S e , and nuclear, S n , stopping power curves for Cl 45.8 MeV in Li Nb O 3 calculated with SRIM2003. The dotted curve shows the corresponding amorphization threshold, S th .

Fig. 2
Fig. 2

Ordinary (closed symbols) and extraordinary (open symbols) refractive index profiles at λ = 633 nm for x-cut Li Nb O 3 samples irradiated with Cl 45.8 MeV ions at the fluence ( at cm 2 ) of 2 × 10 12 (squares) and 8 × 10 12 (circles). The symbols correspond to the measured effective indices. Horizontal dashed curves show the refractive index values for the crystal ( n os and n es ) and amorphous ( n a ) regions. A guess of the expected refractive index profiles behind the minimum is also plotted with a dotted curve. The refractive index profiles after 1 h annealing in air at 250 ° C are shown with dashed curves without symbols for the fluence 8 × 10 12 cm 2 .

Fig. 3
Fig. 3

Evolution of the relative d 33 nonlinear coefficient with the irradiation fluence of Cl 46 MeV ions. The dashed curve is only a guide for the eyes.

Fig. 4
Fig. 4

Experimental dependence of the ratio Δ I 2 Ω , m Δ I Ω , m with an amplitude of modulated voltage V m , obtained for the electro-optic coefficient measurement.

Metrics