Abstract

Splitting of high-Q whispering gallery modes into a doublet of counterpropagating modes was observed in a resonator fabricated from LiNbO3. An energy-transfer rate of 10MHz was calculated by measuring the frequency detuning of the doublet structure. The splitting rate is also used to calculate the maximum variation in the internal index of refraction over one wavelength, which is of the order of 107. This shows that the mechanical process used to fabricate whispering-gallery-mode resonators from LiNbO3 is sufficient to achieve material-limited quality factors.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Matsko, A. Savchenkov, M. Mohageg, and L. Maleki, Opt. Lett. 32, 497 (2007).
    [CrossRef] [PubMed]
  2. A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, Opt. Lett. 32, 157 (2007).
    [CrossRef]
  3. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleko, Phys. Rev. Lett. 92, 043903 (2004).
    [CrossRef] [PubMed]
  4. M. Mohageg, in Conference on Lasers and Electro-Optics-Pacific Rim (IEEE, 2005), paper QTuG4-5.
  5. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Electron. Lett. 39, 389 (2003).
    [CrossRef]
  6. M. Mohageg, A. Savchenkov, D. Strekalov, A. Matsko, V. Ilchenko, and L. Maleki, Electron. Lett. 41, 356 (2005).
    [CrossRef]
  7. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
    [CrossRef] [PubMed]
  8. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).
    [CrossRef] [PubMed]
  9. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, Opt. Lett. 20, 1835 (1995).
    [CrossRef] [PubMed]
  10. K. Kieu and M. Mansuripur, Opt. Lett. 32, 244 (2007).
    [CrossRef] [PubMed]
  11. A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. V. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, Opt. Lett. 31, 1313 (2006).
    [CrossRef] [PubMed]
  12. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
    [CrossRef]
  13. Note: this is in fact one of the resonators used in .
  14. M. Yamada, M. Matsumura, M. Fukuzawa,K. Higuma, and H. Nagata, Proc. SPIE 3936, 101 (2000).
    [CrossRef]
  15. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. Rev. A 70, 051804(R) (2004).
    [CrossRef]
  16. V. V. Vasiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
    [CrossRef]
  17. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
    [CrossRef]

2007 (3)

2006 (1)

2005 (1)

M. Mohageg, A. Savchenkov, D. Strekalov, A. Matsko, V. Ilchenko, and L. Maleki, Electron. Lett. 41, 356 (2005).
[CrossRef]

2004 (3)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleko, Phys. Rev. Lett. 92, 043903 (2004).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. Rev. A 70, 051804(R) (2004).
[CrossRef]

2003 (1)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Electron. Lett. 39, 389 (2003).
[CrossRef]

2002 (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
[CrossRef]

2000 (2)

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
[CrossRef]

M. Yamada, M. Matsumura, M. Fukuzawa,K. Higuma, and H. Nagata, Proc. SPIE 3936, 101 (2000).
[CrossRef]

1998 (1)

V. V. Vasiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

1995 (1)

Electron. Lett. (2)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Electron. Lett. 39, 389 (2003).
[CrossRef]

M. Mohageg, A. Savchenkov, D. Strekalov, A. Matsko, V. Ilchenko, and L. Maleki, Electron. Lett. 41, 356 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

V. V. Vasiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (1)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. Rev. A 70, 051804(R) (2004).
[CrossRef]

Phys. Rev. Lett. (2)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleko, Phys. Rev. Lett. 92, 043903 (2004).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Yamada, M. Matsumura, M. Fukuzawa,K. Higuma, and H. Nagata, Proc. SPIE 3936, 101 (2000).
[CrossRef]

Other (2)

Note: this is in fact one of the resonators used in .

M. Mohageg, in Conference on Lasers and Electro-Optics-Pacific Rim (IEEE, 2005), paper QTuG4-5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Coherent backscattering. The left y axes are B t 2 , the resonator spectrum in the overcoupled and critically coupled regimes. The right axes are B r 2 , the backscattered power (relative to B t 2 ). In the overcoupled regime, backscattered light is observed but no splitting is apparent. In the critically coupled regime, a detuning of 40 MHz is observed between the counterpropagating modes, which have individual linewidths of less than 30 MHz .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϵ = ϵ 0 + δ cos ( Λ ϕ ) ,
β 12 = ω 0 2 2 n 2 d V E 1 δ cos ( Λ ϕ ) E 2 * d V E 1 2 ,
B r B in = i 2 δ c β 12 ( δ m + δ c ) 2 + β 12 2 Δ ω 2 + i 2 Δ ω ( δ m + δ c ) ,
Δ ω ω = 2 β ω 0 .

Metrics