Abstract

We introduce a time-domain model to study the dynamics of optoelectronic oscillators. We show that, due to the interaction between nonlinearity and time delay, the envelope amplitude of ultrapure microwaves generated by optoelectronic oscillators can turn unstable when the gain is increased beyond a given critical value. Our analytical predictions are confirmed by numerical simulations and experiments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. X. S. Yao and L. Maleki, Electron. Lett. 30, 1525 (1994).
    [CrossRef]
  2. A. Neyer and E. Voges, IEEE J. Quantum Electron. 18, 2009 (1982).
    [CrossRef]
  3. N. Gastaud, S. Poinsot, L. Larger, M. Hanna, J.-M. Merolla, J.-P. Goedgebuer, and F. Malassenet, Electron. Lett. 40, 898 (2004).
    [CrossRef]
  4. Y. Chembo Kouomou, P. Colet, L. Larger, and N. Gastaud, Phys. Rev. Lett. 95, 203903 (2005).
    [CrossRef] [PubMed]
  5. J. Lasri, P. Devgan, R. Tang, and P. Kumar, IEEE Photon. Technol. Lett. 16, 263(2004).
    [CrossRef]
  6. X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996).
    [CrossRef]
  7. E. Rubiola and V. Giordano, Rev. Sci. Instrum. 73, 2445 (2002).
    [CrossRef]

2005

Y. Chembo Kouomou, P. Colet, L. Larger, and N. Gastaud, Phys. Rev. Lett. 95, 203903 (2005).
[CrossRef] [PubMed]

2004

J. Lasri, P. Devgan, R. Tang, and P. Kumar, IEEE Photon. Technol. Lett. 16, 263(2004).
[CrossRef]

N. Gastaud, S. Poinsot, L. Larger, M. Hanna, J.-M. Merolla, J.-P. Goedgebuer, and F. Malassenet, Electron. Lett. 40, 898 (2004).
[CrossRef]

2002

E. Rubiola and V. Giordano, Rev. Sci. Instrum. 73, 2445 (2002).
[CrossRef]

1996

1994

X. S. Yao and L. Maleki, Electron. Lett. 30, 1525 (1994).
[CrossRef]

1982

A. Neyer and E. Voges, IEEE J. Quantum Electron. 18, 2009 (1982).
[CrossRef]

Electron. Lett.

X. S. Yao and L. Maleki, Electron. Lett. 30, 1525 (1994).
[CrossRef]

N. Gastaud, S. Poinsot, L. Larger, M. Hanna, J.-M. Merolla, J.-P. Goedgebuer, and F. Malassenet, Electron. Lett. 40, 898 (2004).
[CrossRef]

IEEE J. Quantum Electron.

A. Neyer and E. Voges, IEEE J. Quantum Electron. 18, 2009 (1982).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Lasri, P. Devgan, R. Tang, and P. Kumar, IEEE Photon. Technol. Lett. 16, 263(2004).
[CrossRef]

J. Opt. Soc. Am. B

Phys. Rev. Lett.

Y. Chembo Kouomou, P. Colet, L. Larger, and N. Gastaud, Phys. Rev. Lett. 95, 203903 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

E. Rubiola and V. Giordano, Rev. Sci. Instrum. 73, 2445 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Numerical simulations of Eq. (2) for various values of the effective feedback gain γ, with σ = π ( mod 2 π ) and ϕ = π 4 . (a) γ = 2.2 < γ c r : the amplitude converges to a constant value. (b) γ = 2.4 > γ c r : the amplitude is modulated with a period equal to 2 T = 40 μ s .

Fig. 3
Fig. 3

Experimental evidence of the Hopf-induced amplitude modulation, as the gain is increased; a1, b1, and c1 are time traces, and a2, b2 and c2 are the Fourier spectra of the corresponding reconstructed envelopes (relatively to the carrier at Ω 0 2 π = 3 GHz ). (a1), (a2) Before the bifurcation, (b1), (b2) at the onset of the bifurcation, (c1), (c2) after the bifurcation.

Fig. 4
Fig. 4

Bifurcation diagrams for the microwave variable x ( t ) revealing unexpected nonlinear effects (to be compared with Fig. 4 in [6]). (a) Theoretical, (b) experimental.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x + τ d x d t + 1 θ t 0 t x ( s ) d s = β cos 2 [ x ( t T ) + ϕ ] ,
A ̇ = μ A 2 μ γ e i σ J c 1 [ 2 A T ] A T ,
δ A ̇ = μ δ A + μ γ δ A T .
δ A ̇ = μ δ A + 2 μ γ { J c 1 [ 2 A o ] + 2 A o J c 1 [ 2 A o ] } δ A T ,
1 2 + A o J c 1 [ 2 A o ] J c 1 [ 2 A o ] < 1 2 ,

Metrics