Abstract

The strain dependence of Brillouin gain spectrum in two novel carbon/polyimide coated fibers (CPCFs) is studied, for what we believe to be the first time, by numerical simulation and experiment. The strain dependence of the Brillouin frequency shift for the two CPCFs maintained linear relation with the elongation up to 4.26% and 4.0%, respectively. The effects of strain on the elastic modulus, the core refractive index, and density are determined, which have been used to simulate the strain dependence of the frequency shift, linewidth, and gain coefficient for the two CPCFs. The simulated and measured results are well matched.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. X. Bao, M. DeMerchant, A. Brown, and T. Bremner, J. Lightwave Technol. 19, 1698 (2001).
    [CrossRef]
  2. M. Gonzalez-Herraez, K. Y. Song, and L. Thevenaz, Appl. Phys. Lett. 87, 081113 (2005).
    [CrossRef]
  3. M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
    [CrossRef]
  4. A. Yeniay, J. M. Delavaux, and J. Toulouse, J. Lightwave Technol. 20, 1425 (2002).
    [CrossRef]
  5. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2002).
  6. N. Tanaka, Y. Okabe, and N. Takeda, Smart Mater. Struct. 12, 940 (2003).
    [CrossRef]
  7. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1970).
  8. V. V. Rondinella and M. J. Matthewson, J. Am. Ceram. Soc. 76, 139 (1993).
    [CrossRef]
  9. J. P. Smith, MS Thesis, University of New Brunswick, 1999.
  10. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, Electron. Lett. 22, 1011 (1986).
    [CrossRef]

2005

M. Gonzalez-Herraez, K. Y. Song, and L. Thevenaz, Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

2003

N. Tanaka, Y. Okabe, and N. Takeda, Smart Mater. Struct. 12, 940 (2003).
[CrossRef]

2002

2001

1997

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

1993

V. V. Rondinella and M. J. Matthewson, J. Am. Ceram. Soc. 76, 139 (1993).
[CrossRef]

1986

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, Electron. Lett. 22, 1011 (1986).
[CrossRef]

Appl. Phys. Lett.

M. Gonzalez-Herraez, K. Y. Song, and L. Thevenaz, Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Electron. Lett.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, Electron. Lett. 22, 1011 (1986).
[CrossRef]

J. Am. Ceram. Soc.

V. V. Rondinella and M. J. Matthewson, J. Am. Ceram. Soc. 76, 139 (1993).
[CrossRef]

J. Lightwave Technol.

Smart Mater. Struct.

N. Tanaka, Y. Okabe, and N. Takeda, Smart Mater. Struct. 12, 940 (2003).
[CrossRef]

Other

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1970).

J. P. Smith, MS Thesis, University of New Brunswick, 1999.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Force versus strain for the CPCFs, (a) fiber A, (b) fiber B.

Fig. 2
Fig. 2

BFS versus tensile strain for CPCFs.

Fig. 3
Fig. 3

Brillouin linewidth as a function of strain for CPCFs.

Fig. 4
Fig. 4

Brillouin gain coefficient decreases as the strain increases for CPCFs.

Tables (1)

Tables Icon

Table 1 Waveguide and Physical Parameters of the CPCFs under Strain-Free Conditions

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ν B = 2 n V a λ ,
Δ ν B = 1 2 π 4 3 η s ( 2 n λ ) 2 ρ ,
g B 0 = ( 2 π n 7 p 2 ) ( c λ 2 ρ V a Δ ν B ) ,
F = E F 0 A tot 0 ϵ + E F 0 A tot 0 ( α F 2 p r pol ) ϵ 2 2 ,
E c 0 = ( A tot 0 E F 0 A car 0 E car 0 A pol 0 E pol 0 ) A c 0 ,
α c = A tot 0 A c 0 E F 0 E c 0 α F ,

Metrics