Abstract

For the first time to our knowledge, high-strength (>30dB) first-order Bragg grating waveguides were fabricated in bulk fused silica glass in a single-scanning step by modulating a high-repetition-rate femtosecond fiber laser with an external acousto-optic modulator. The modulation induced a waveguide segmentation by delivering controlled bursts of laser pulses to define an array of partially overlapped refractive index voxels. With appropriate choice of modulation frequency and sample scanning speed, low loss waveguides could be formed at high writing speeds to yield sharp Bragg spectral resonances tunable over the 1300to1550nm telecom band. Effects of acousto-optic modulation duty cycle on propagation loss and grating strength are characterized. This modulation method offers facile control and integration of multiwavelength Bragg grating devices to enhance overall functionality of optical circuits in three-dimensional geometries.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
    [CrossRef] [PubMed]
  2. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, Opt. Lett. 31, 3495 (2006).
    [CrossRef] [PubMed]
  3. H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, Opt. Express 15, 4182 (2007).
    [CrossRef] [PubMed]
  4. G. D. Marshall, M. Ams, and M. J. Withford, Opt. Lett. 31, 2690 (2006).
    [CrossRef] [PubMed]
  5. C. B. Schaffer, J. F. Garcia, and E. Mazur, Appl. Phys. A 76, 351 (2003).
    [CrossRef]
  6. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, Opt. Express 13, 612 (2005).
    [CrossRef] [PubMed]
  7. S. M. Eaton, H. Zhang, and P. R. Herman, Opt. Express 13, 4708 (2005).
    [CrossRef] [PubMed]
  8. L. Shah, A. Y. Arai, S. Eaton, and P. Herman, Opt. Express 13, 1999 (2005).
    [CrossRef] [PubMed]
  9. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
    [CrossRef] [PubMed]

2007 (1)

2006 (2)

2005 (3)

2003 (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

C. B. Schaffer, J. F. Garcia, and E. Mazur, Appl. Phys. A 76, 351 (2003).
[CrossRef]

1996 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Femtosecond laser and beam delivery arrangement for burst fabrication of Bragg grating waveguides.

Fig. 2
Fig. 2

Microscope images (top row) and near-field mode profiles at 1560 nm wavelength (bottom row) of the BGWs written with 20%, 50%, 80%, and 100% AOM modulation duty cycles.

Fig. 3
Fig. 3

Transmission and reflection spectrum recorded for a BGW written with 60% duty cycle.

Fig. 4
Fig. 4

Effect of modulation duty cycle on BGW performance including (a) the Bragg wavelength and the propagation loss and (b) the peak Bragg transmission and reflection strength.

Fig. 5
Fig. 5

Comparison of transmission spectra of the BGWs written with laser light of circular polarization (a) and linear polarization perpendicular to sample scan direction (b).

Metrics