Abstract

We report a mode-locked Ti:sapphire femtosecond laser with 5GHz repetition rate. Spectral broadening of the 24fs pulses in a microstructured fiber yields an octave-spanning spectrum and permits self-referencing and active stabilization of the emitted femtosecond laser frequency comb (FLFC). The individual modes of the 5GHz FLFC are resolved with a high-resolution spectrometer based on a virtually imaged phased array spectral disperser. Isolation of single comb elements at a microwatt average power level is demonstrated. The combination of the high-power, frequency-stabilized 5GHz laser and the straightforward resolution of its many modes will benefit applications in direct frequency comb spectroscopy. Additionally, such a stabilized FLFC should serve as a useful tool for direct mode-by-mode Fourier synthesis of optical waveforms.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
    [CrossRef] [PubMed]
  2. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, Science 360, 2063 (2004).
    [CrossRef]
  3. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, Opt. Lett. 30, 1734 (2005).
    [CrossRef] [PubMed]
  4. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, Opt. Lett. 30, 667 (2005).
    [CrossRef] [PubMed]
  5. Z. Jiang, D. E. Leaird, and A. M. Weiner, Opt. Express 13, 10431 (2005).
    [CrossRef] [PubMed]
  6. A. Bartels, T. Dekorsy, and H. Kurz, Opt. Lett. 24, 996 (1999).
    [CrossRef]
  7. C. G. Leburn, A. A. Lagatsky, C. T. A Brown, and W. Sibbett, Electron. Lett. 40, 805 (2004).
    [CrossRef]
  8. T. M. Fortier, A. Bartels, and S. A. Diddams, Opt. Lett. 31, 1011 (2006).
    [CrossRef] [PubMed]
  9. K. R. Tamura and M. Nakazawa, Opt. Lett. 26, 762 (2001).
    [CrossRef]
  10. F. Quinlan, S. Gee, S. Ozharar, and P. J. Delfyett, Opt. Lett. 31, 2870 (2006).
    [CrossRef] [PubMed]
  11. B. C. Collings, K. Bergman, and W. H. Knox, Opt. Lett. 23, 123 (1998).
    [CrossRef]
  12. S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, Electron. Lett. 43, 32 (2007).
    [CrossRef]
  13. S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
    [CrossRef] [PubMed]
  14. A. Bartels, S. A. Diddams, T. M. Ramond, and L. Hollberg, Opt. Lett. 28, 663 (2003).
    [CrossRef] [PubMed]
  15. D. J. Jones, S. A. Diddams, J. K. Ranka, A. J. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
    [CrossRef] [PubMed]
  16. S. Xiao and A. M. Weiner, Opt. Express 12, 2895 (2004).
    [CrossRef] [PubMed]
  17. S. Xiao and A. M. Weiner, Opt. Express 14, 3073 (2006).
    [CrossRef] [PubMed]
  18. T. Brabec, Th. Spielmann, and F. Krausz, Opt. Lett. 17, 748 (1992).
    [CrossRef] [PubMed]

2007 (2)

S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, Electron. Lett. 43, 32 (2007).
[CrossRef]

S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (3)

2004 (3)

S. Xiao and A. M. Weiner, Opt. Express 12, 2895 (2004).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, Science 360, 2063 (2004).
[CrossRef]

C. G. Leburn, A. A. Lagatsky, C. T. A Brown, and W. Sibbett, Electron. Lett. 40, 805 (2004).
[CrossRef]

2003 (1)

2002 (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. J. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1992 (1)

Electron. Lett. (2)

C. G. Leburn, A. A. Lagatsky, C. T. A Brown, and W. Sibbett, Electron. Lett. 40, 805 (2004).
[CrossRef]

S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, Electron. Lett. 43, 32 (2007).
[CrossRef]

Nature (2)

S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (9)

Science (2)

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, Science 360, 2063 (2004).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. J. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Interferometric autocorrelation trace (solid curve) of the 5 GHz pulses and low-pass filtered trace (dashed curve). Inset: laser cavity schematic. (b) Laser output spectrum in units of power per 5 GHz mode (dashed curved) and octave-spanning spectrum after nonlinear broadening (solid curve).

Fig. 2
Fig. 2

(a) Self-referencing beat signal of the 5 GHz laser. Resolution bandwidth (RBW) is 300 kHz . (b) Phase-locked f 0 signal with RBW set to 100 Hz .

Fig. 3
Fig. 3

(a) Output of the VIPA spectrometer recorded with a CCD camera. The image covers 5 nm centered at 802.5 nm . (b) Zoom into the CCD image. Successive modes are numbered. (c) Mode 1 isolated with a pinhole.

Fig. 4
Fig. 4

Mode frequency versus mode number (solid squares) and expected dependence for the 5.000994 GHz repetition rate (dashed line). Error bars represent the frequency repeatability of the OSA. Inset: spectra of modes number 1 (solid curve) and 2 (dashed curve).

Metrics