Abstract

We report a mode-locked Ti:sapphire femtosecond laser with 5GHz repetition rate. Spectral broadening of the 24fs pulses in a microstructured fiber yields an octave-spanning spectrum and permits self-referencing and active stabilization of the emitted femtosecond laser frequency comb (FLFC). The individual modes of the 5GHz FLFC are resolved with a high-resolution spectrometer based on a virtually imaged phased array spectral disperser. Isolation of single comb elements at a microwatt average power level is demonstrated. The combination of the high-power, frequency-stabilized 5GHz laser and the straightforward resolution of its many modes will benefit applications in direct frequency comb spectroscopy. Additionally, such a stabilized FLFC should serve as a useful tool for direct mode-by-mode Fourier synthesis of optical waveforms.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
    [CrossRef] [PubMed]
  2. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, Science 360, 2063 (2004).
    [CrossRef]
  3. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, Opt. Lett. 30, 1734 (2005).
    [CrossRef] [PubMed]
  4. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, Opt. Lett. 30, 667 (2005).
    [CrossRef] [PubMed]
  5. Z. Jiang, D. E. Leaird, and A. M. Weiner, Opt. Express 13, 10431 (2005).
    [CrossRef] [PubMed]
  6. A. Bartels, T. Dekorsy, and H. Kurz, Opt. Lett. 24, 996 (1999).
    [CrossRef]
  7. C. G. Leburn, A. A. Lagatsky, C. T. A Brown, and W. Sibbett, Electron. Lett. 40, 805 (2004).
    [CrossRef]
  8. T. M. Fortier, A. Bartels, and S. A. Diddams, Opt. Lett. 31, 1011 (2006).
    [CrossRef] [PubMed]
  9. K. R. Tamura and M. Nakazawa, Opt. Lett. 26, 762 (2001).
    [CrossRef]
  10. F. Quinlan, S. Gee, S. Ozharar, and P. J. Delfyett, Opt. Lett. 31, 2870 (2006).
    [CrossRef] [PubMed]
  11. B. C. Collings, K. Bergman, and W. H. Knox, Opt. Lett. 23, 123 (1998).
    [CrossRef]
  12. S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, Electron. Lett. 43, 32 (2007).
    [CrossRef]
  13. S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
    [CrossRef] [PubMed]
  14. A. Bartels, S. A. Diddams, T. M. Ramond, and L. Hollberg, Opt. Lett. 28, 663 (2003).
    [CrossRef] [PubMed]
  15. D. J. Jones, S. A. Diddams, J. K. Ranka, A. J. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
    [CrossRef] [PubMed]
  16. S. Xiao and A. M. Weiner, Opt. Express 12, 2895 (2004).
    [CrossRef] [PubMed]
  17. S. Xiao and A. M. Weiner, Opt. Express 14, 3073 (2006).
    [CrossRef] [PubMed]
  18. T. Brabec, Th. Spielmann, and F. Krausz, Opt. Lett. 17, 748 (1992).
    [CrossRef] [PubMed]

2007 (2)

S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, Electron. Lett. 43, 32 (2007).
[CrossRef]

S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (3)

2004 (3)

S. Xiao and A. M. Weiner, Opt. Express 12, 2895 (2004).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, Science 360, 2063 (2004).
[CrossRef]

C. G. Leburn, A. A. Lagatsky, C. T. A Brown, and W. Sibbett, Electron. Lett. 40, 805 (2004).
[CrossRef]

2003 (1)

2002 (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. J. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1992 (1)

Electron. Lett. (2)

C. G. Leburn, A. A. Lagatsky, C. T. A Brown, and W. Sibbett, Electron. Lett. 40, 805 (2004).
[CrossRef]

S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, Electron. Lett. 43, 32 (2007).
[CrossRef]

Nature (2)

S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (9)

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. J. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, Science 360, 2063 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Interferometric autocorrelation trace (solid curve) of the 5 GHz pulses and low-pass filtered trace (dashed curve). Inset: laser cavity schematic. (b) Laser output spectrum in units of power per 5 GHz mode (dashed curved) and octave-spanning spectrum after nonlinear broadening (solid curve).

Fig. 2
Fig. 2

(a) Self-referencing beat signal of the 5 GHz laser. Resolution bandwidth (RBW) is 300 kHz . (b) Phase-locked f 0 signal with RBW set to 100 Hz .

Fig. 3
Fig. 3

(a) Output of the VIPA spectrometer recorded with a CCD camera. The image covers 5 nm centered at 802.5 nm . (b) Zoom into the CCD image. Successive modes are numbered. (c) Mode 1 isolated with a pinhole.

Fig. 4
Fig. 4

Mode frequency versus mode number (solid squares) and expected dependence for the 5.000994 GHz repetition rate (dashed line). Error bars represent the frequency repeatability of the OSA. Inset: spectra of modes number 1 (solid curve) and 2 (dashed curve).

Metrics