Abstract

Using an optical biosensor based on a dual-peak long-period fiber grating, we have demonstrated the detection of interactions between biomolecules in real time. Silanization of the grating surface was successfully realized for the covalent immobilization of probe DNA, which was subsequently hybridized with the complementary target DNA sequence. It is interesting to note that the DNA biosensor was reusable after being stripped off the hybridized target DNA from the grating surface, demonstrating a function of multiple usability.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. R. Luckarift, J. C. Spain, R. R. Naik, and M. O. Stone, Nat. Biotechnol. 22, 211 (2004).
    [CrossRef] [PubMed]
  2. M. Beier and J. D. Hoheisel, Nucleic Acids Res. 27, 1970 (1999).
    [CrossRef] [PubMed]
  3. F. Vollmer, D. Braun, and A. Libchaber, Appl. Phys. Lett. 80, 4057 (1995).
    [CrossRef]
  4. A. Ksendzov and Y. Lin, Opt. Lett. 30, 3344 (2005).
    [CrossRef]
  5. J. L. DeRisi, V. R. Iver, and P. O. Brown, Science 278, 680 (1997).
    [CrossRef] [PubMed]
  6. G. Boisde and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, 1996).
  7. M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
    [CrossRef] [PubMed]
  8. A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, IEEE J. Sel. Top. Quantum Electron. 11, 864 (2005).
    [CrossRef]
  9. X. Shu, L. Zhang, and I. Bennion, J. Lightwave Technol. 20, 255 (2002).
    [CrossRef]
  10. X. Chen, K. Zhou, L. Zhang, and I. Bennion, Appl. Opt. 46, 451 (2007).
    [CrossRef] [PubMed]
  11. G. T. Hermanson, Bioconjugate Techniques (Academic, 1996).
  12. G. Mattson, E. Conklin, S. Desai, G. Nielander, D. Savage, and S. Morgensen, Mol. Biol. Rep. 17, 167 (1993).
    [CrossRef] [PubMed]
  13. S. L. Rea, D. Wu, J. R. Cypser, J. W. Vaupel, and T. E. Johnson, Nat. Genet. 37, 894 (2005).
    [CrossRef] [PubMed]
  14. M. D. Hughes, Z. R. Zhang, A. J. Sutherland, A. F. Santos, and A. V. Hine, Nucleic Acids Res. 33, e32 (2005).
    [CrossRef] [PubMed]

2007 (1)

2005 (4)

A. Ksendzov and Y. Lin, Opt. Lett. 30, 3344 (2005).
[CrossRef]

A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, IEEE J. Sel. Top. Quantum Electron. 11, 864 (2005).
[CrossRef]

S. L. Rea, D. Wu, J. R. Cypser, J. W. Vaupel, and T. E. Johnson, Nat. Genet. 37, 894 (2005).
[CrossRef] [PubMed]

M. D. Hughes, Z. R. Zhang, A. J. Sutherland, A. F. Santos, and A. V. Hine, Nucleic Acids Res. 33, e32 (2005).
[CrossRef] [PubMed]

2004 (1)

H. R. Luckarift, J. C. Spain, R. R. Naik, and M. O. Stone, Nat. Biotechnol. 22, 211 (2004).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
[CrossRef] [PubMed]

1999 (1)

M. Beier and J. D. Hoheisel, Nucleic Acids Res. 27, 1970 (1999).
[CrossRef] [PubMed]

1997 (1)

J. L. DeRisi, V. R. Iver, and P. O. Brown, Science 278, 680 (1997).
[CrossRef] [PubMed]

1995 (1)

F. Vollmer, D. Braun, and A. Libchaber, Appl. Phys. Lett. 80, 4057 (1995).
[CrossRef]

1993 (1)

G. Mattson, E. Conklin, S. Desai, G. Nielander, D. Savage, and S. Morgensen, Mol. Biol. Rep. 17, 167 (1993).
[CrossRef] [PubMed]

Anal. Chem. (1)

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 2895 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Vollmer, D. Braun, and A. Libchaber, Appl. Phys. Lett. 80, 4057 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. N. Chryssis, S. S. Saini, S. M. Lee, H. Yi, W. E. Bentley, and M. Dagenais, IEEE J. Sel. Top. Quantum Electron. 11, 864 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Mol. Biol. Rep. (1)

G. Mattson, E. Conklin, S. Desai, G. Nielander, D. Savage, and S. Morgensen, Mol. Biol. Rep. 17, 167 (1993).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

H. R. Luckarift, J. C. Spain, R. R. Naik, and M. O. Stone, Nat. Biotechnol. 22, 211 (2004).
[CrossRef] [PubMed]

Nat. Genet. (1)

S. L. Rea, D. Wu, J. R. Cypser, J. W. Vaupel, and T. E. Johnson, Nat. Genet. 37, 894 (2005).
[CrossRef] [PubMed]

Nucleic Acids Res. (2)

M. D. Hughes, Z. R. Zhang, A. J. Sutherland, A. F. Santos, and A. V. Hine, Nucleic Acids Res. 33, e32 (2005).
[CrossRef] [PubMed]

M. Beier and J. D. Hoheisel, Nucleic Acids Res. 27, 1970 (1999).
[CrossRef] [PubMed]

Opt. Lett. (1)

Science (1)

J. L. DeRisi, V. R. Iver, and P. O. Brown, Science 278, 680 (1997).
[CrossRef] [PubMed]

Other (2)

G. Boisde and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, 1996).

G. T. Hermanson, Bioconjugate Techniques (Academic, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectral evolution of a dual-peak LPFG with a period of 161 μ m under increased (arrow direction) UV exposure.

Fig. 2
Fig. 2

Basic scheme of the functionalization of LPFG fiber surface for the generation of biosensors.

Fig. 3
Fig. 3

(a) Fluorescence on the fiber surface indicates (b) successful DMS activation.

Fig. 4
Fig. 4

(a) LPFG’s spectra monitored at the beginning and end of probe DNA immobilization process. (b) Wavelength evolution of grating sensor against time during hybridization of target DNA.

Fig. 5
Fig. 5

(a) Spectra of the LPFG before and after the stripping procedure. (b) Wavelength shift against time during the rehybridization process.

Tables (1)

Tables Icon

Table 1 Sequences and Modifications of the Probe and Target Oligonucleotides

Metrics