Abstract

Sensitizer-free holmium-doped silica and fluoride mid-infrared fiber lasers are pumped using a high-power diode laser operating at 1148nm. A maximum output power of 162mW at 2.86μm was produced at a slope efficiency of 24% using Ho3+, Pr3+-doped fluoride fiber. Using Ho3+-doped silica fiber, a maximum output power of 55mW at 2.1μm was generated at a slope efficiency of 27%, a value limited by the presence of pump excited state absorption.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. M. Jauncey, J. T. Lin, L. Reekie, and R. J. Mears, Electron. Lett. 22, 198 (1986).
    [CrossRef]
  2. L. Reekie, J. M. Jauncey, S. B. Poole, and D. N. Payne, Electron. Lett. 23, 1076 (1987).
    [CrossRef]
  3. J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, IEEE Photonics Technol. Lett. 5, 301 (1993).
    [CrossRef]
  4. W. L. Barnes and J. E. Townsend, Electron. Lett. 26, 746 (1990).
    [CrossRef]
  5. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, Electron. Lett. 35, 1158 (1999).
    [CrossRef]
  6. S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, Appl. Phys. Lett. 67, 1815 (1995).
    [CrossRef]
  7. R. Allen, L. Esterowitz, and R. J. Ginther, Appl. Phys. Lett. 56, 1635 (1990).
    [CrossRef]
  8. M. C. Brierley, P. W. France, and C. A. Millar, Electron. Lett. 24, 539 (1988).
    [CrossRef]
  9. D. C. Hanna, R. M. Percival, R. G. Smart, J. E. Townsend, and A. C. Tropper, Electron. Lett. 25, 593 (1989).
    [CrossRef]
  10. L. Wetenkamp, Electron. Lett. 26, 883 (1990).
    [CrossRef]
  11. C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, IEEE J. Quantum Electron. 3, 1603 (1995).
    [CrossRef]
  12. F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, Appl. Phys. Lett. 79, 1965 (2001).
    [CrossRef]
  13. K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, Phys. Rev. B 30, 2429 (1984).
    [CrossRef]
  14. S. D. Jackson, Appl. Phys. B 76, 793 (2003).
    [CrossRef]
  15. J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, J. Appl. Phys. 69, 8183 (1991).
    [CrossRef]
  16. G. D. Gilliland, R. C. Powell, and L. Esterowitz, Phys. Rev. B 38, 9958 (1988).
    [CrossRef]
  17. A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, Electron. Lett. 36, 1015 (2000).
    [CrossRef]

2003 (1)

S. D. Jackson, Appl. Phys. B 76, 793 (2003).
[CrossRef]

2001 (1)

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, Appl. Phys. Lett. 79, 1965 (2001).
[CrossRef]

2000 (1)

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, Electron. Lett. 36, 1015 (2000).
[CrossRef]

1999 (1)

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, Electron. Lett. 35, 1158 (1999).
[CrossRef]

1995 (2)

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, Appl. Phys. Lett. 67, 1815 (1995).
[CrossRef]

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, IEEE J. Quantum Electron. 3, 1603 (1995).
[CrossRef]

1993 (1)

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, IEEE Photonics Technol. Lett. 5, 301 (1993).
[CrossRef]

1991 (1)

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, J. Appl. Phys. 69, 8183 (1991).
[CrossRef]

1990 (3)

L. Wetenkamp, Electron. Lett. 26, 883 (1990).
[CrossRef]

W. L. Barnes and J. E. Townsend, Electron. Lett. 26, 746 (1990).
[CrossRef]

R. Allen, L. Esterowitz, and R. J. Ginther, Appl. Phys. Lett. 56, 1635 (1990).
[CrossRef]

1989 (1)

D. C. Hanna, R. M. Percival, R. G. Smart, J. E. Townsend, and A. C. Tropper, Electron. Lett. 25, 593 (1989).
[CrossRef]

1988 (2)

G. D. Gilliland, R. C. Powell, and L. Esterowitz, Phys. Rev. B 38, 9958 (1988).
[CrossRef]

M. C. Brierley, P. W. France, and C. A. Millar, Electron. Lett. 24, 539 (1988).
[CrossRef]

1987 (1)

L. Reekie, J. M. Jauncey, S. B. Poole, and D. N. Payne, Electron. Lett. 23, 1076 (1987).
[CrossRef]

1986 (1)

I. M. Jauncey, J. T. Lin, L. Reekie, and R. J. Mears, Electron. Lett. 22, 198 (1986).
[CrossRef]

1984 (1)

K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, Phys. Rev. B 30, 2429 (1984).
[CrossRef]

Appl. Phys. B (1)

S. D. Jackson, Appl. Phys. B 76, 793 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, Appl. Phys. Lett. 79, 1965 (2001).
[CrossRef]

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, Appl. Phys. Lett. 67, 1815 (1995).
[CrossRef]

R. Allen, L. Esterowitz, and R. J. Ginther, Appl. Phys. Lett. 56, 1635 (1990).
[CrossRef]

Electron. Lett. (8)

M. C. Brierley, P. W. France, and C. A. Millar, Electron. Lett. 24, 539 (1988).
[CrossRef]

D. C. Hanna, R. M. Percival, R. G. Smart, J. E. Townsend, and A. C. Tropper, Electron. Lett. 25, 593 (1989).
[CrossRef]

L. Wetenkamp, Electron. Lett. 26, 883 (1990).
[CrossRef]

I. M. Jauncey, J. T. Lin, L. Reekie, and R. J. Mears, Electron. Lett. 22, 198 (1986).
[CrossRef]

L. Reekie, J. M. Jauncey, S. B. Poole, and D. N. Payne, Electron. Lett. 23, 1076 (1987).
[CrossRef]

W. L. Barnes and J. E. Townsend, Electron. Lett. 26, 746 (1990).
[CrossRef]

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, Electron. Lett. 35, 1158 (1999).
[CrossRef]

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, Electron. Lett. 36, 1015 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, IEEE J. Quantum Electron. 3, 1603 (1995).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, IEEE Photonics Technol. Lett. 5, 301 (1993).
[CrossRef]

J. Appl. Phys. (1)

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, J. Appl. Phys. 69, 8183 (1991).
[CrossRef]

Phys. Rev. B (2)

G. D. Gilliland, R. C. Powell, and L. Esterowitz, Phys. Rev. B 38, 9958 (1988).
[CrossRef]

K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, Phys. Rev. B 30, 2429 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption coefficient measured as a function of wavelength for a Ho 3 + -doped aluminosilicate preform. Top inset, schematic of the experimental setup; bottom inset, spectrum of the diode laser output.

Fig. 2
Fig. 2

Launch efficiency η L measured for various fibers as a function of the emitted power, P em , from the diode laser. The inset shows the value for η L as a function of the r 2 NA product when the emitted power was 890 mW . For SMF28, r 2 NA = 1.67 ; for Ho 3 + ( 1,000 ppm ) , Pr 3 + ( 20,000 ppm ) , r 2 NA = 7.31 ; for 75 mol. % Ge fiber, r 2 NA = 0.48 ; for 18 mol. % Ge fiber, r 2 NA = 1 ; and for Ho 3 + -doped silica, r 2 NA = 3.44 .

Fig. 3
Fig. 3

Output power, P out , at 3 μ m measured as a function of the launched pump power, P L , for L = 1.5 m of F1 fiber and L = 0.3 m of F2 fiber. The inset shows the slope efficiency η s measured for the F1 fiber laser as a function of L.

Fig. 4
Fig. 4

Spectrum of the output for the two 3 μ m fiber lasers measured at maximum output power. Inset, spectrum of the output for the Ho 3 + -doped silica fiber laser at maximum output power.

Fig. 5
Fig. 5

Output power, P out , at 2.1 μ m from the Ho 3 + -doped silica fiber laser measured as a function of the launched pump power, P L . Inset, ratio of the transmitted pump power, P T , to the incident pump power, P inc as a function of the incident pump power when L = 0.12 m .

Metrics