Abstract

Generation of deep-ultraviolet femtosecond pulses by four-wave mixing through filamentation in neon gas was demonstrated. Fundamental (ω) and second-harmonic (2ω) pulses of 25fs Ti:sapphire amplifier output were focused into neon gas, and 20μJ pulses with the center wavelength of 260nm were produced by a four-wave mixing process, 2ω+2ωω3ω through an 15cm filament. Additionally, pulses with an energy of 2μJ at 200nm were generated, probably by a cascaded process, 3ω+2ωω4ω. The 260nm pulses were compressed by a grating-based compressor and characterized by a dispersion-free transient grating frequency-resolved optical gating. The estimated pulse width was 12fs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Suzuki, Annu. Rev. Phys. Chem. 57, 555 (2006).
    [CrossRef] [PubMed]
  2. J. Manz and L. Wöste, eds., Femtosecond Chemistry (VCH, 1995), Vols. 1 and 2.
  3. P. Baum, S. Lochbrunner, and E. Riedle, Opt. Lett. 29, 1686 (2004).
    [CrossRef] [PubMed]
  4. C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 24, 697 (1999).
    [CrossRef]
  5. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
    [CrossRef]
  6. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, Opt. Lett. 31, 274 (2006).
    [CrossRef] [PubMed]
  7. C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, Appl. Phys. Lett. 89, 151125 (2006).
    [CrossRef]
  8. F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
    [CrossRef] [PubMed]
  9. A. E. Jailaubekov and S. E. Bradforth, Appl. Phys. Lett. 87, 021107 (2005).
    [CrossRef]
  10. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, J. Opt. Soc. Am. B 14, 650 (1997).
    [CrossRef]
  11. M. J. Shaw and C. J. Hooker, Opt. Commun. 103, 153 (1993).
    [CrossRef]
  12. N. Aközbek, A. Becker, M. Scalora, S. Chin, and C. Bowden, Appl. Phys. B 77, 177 (2003).
    [CrossRef]
  13. B. Prade, M. Franco, A. Mysyrowicz, A. A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, and O. Vasseur, Opt. Lett. 31, 2601 (2006).
    [CrossRef] [PubMed]
  14. L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
    [CrossRef] [PubMed]
  15. M. Li, J. P. Nibarger, C. Guo, and G. N. Gibson, Appl. Opt. 38, 5250 (1999).
    [CrossRef]
  16. A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, U. Keller, A. Couairon, M. Franco, and A. Mysyrowicz, Opt. Express 15, 5394 (2007).
    [CrossRef] [PubMed]
  17. S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, Phys. Rev. E 74, 056604 (2006).
    [CrossRef]

2007

2006

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, Opt. Lett. 31, 274 (2006).
[CrossRef] [PubMed]

B. Prade, M. Franco, A. Mysyrowicz, A. A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, and O. Vasseur, Opt. Lett. 31, 2601 (2006).
[CrossRef] [PubMed]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, Phys. Rev. E 74, 056604 (2006).
[CrossRef]

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

T. Suzuki, Annu. Rev. Phys. Chem. 57, 555 (2006).
[CrossRef] [PubMed]

2005

A. E. Jailaubekov and S. E. Bradforth, Appl. Phys. Lett. 87, 021107 (2005).
[CrossRef]

2004

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, Opt. Lett. 29, 1686 (2004).
[CrossRef] [PubMed]

2003

N. Aközbek, A. Becker, M. Scalora, S. Chin, and C. Bowden, Appl. Phys. B 77, 177 (2003).
[CrossRef]

2001

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

1999

1997

1993

M. J. Shaw and C. J. Hooker, Opt. Commun. 103, 153 (1993).
[CrossRef]

Annu. Rev. Phys. Chem.

T. Suzuki, Annu. Rev. Phys. Chem. 57, 555 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

N. Aközbek, A. Becker, M. Scalora, S. Chin, and C. Bowden, Appl. Phys. B 77, 177 (2003).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
[CrossRef]

Appl. Phys. Lett.

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

A. E. Jailaubekov and S. E. Bradforth, Appl. Phys. Lett. 87, 021107 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

M. J. Shaw and C. J. Hooker, Opt. Commun. 103, 153 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Phys. Rev. Lett.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

Other

J. Manz and L. Wöste, eds., Femtosecond Chemistry (VCH, 1995), Vols. 1 and 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experiment. The inset photograph shows generated filament when the delay time between the second-harmonic pulse and the fundamental pulse was adjusted.

Fig. 2
Fig. 2

Spectra of the four-wave mixing signal through filamentation in neon. (a) Typical spectrum of the 260 nm component. (b) Typical spectrum of the 200 nm component.

Fig. 3
Fig. 3

(a) Schematic of the grating-based compressor. (b) Schematic of the TG-FROG system.

Fig. 4
Fig. 4

(a) Measured TG-FROG trace and (b) reconstructed trace. (c) Retrieved pulse in time domain and (d) in frequency domain.

Metrics