Abstract

We demonstrate experimental proof of principle for an optoelectronic transistor based on the modulation of exciton flux via gate voltage. The exciton optoelectronic transistor (EXOT) implements electronic operation on photons by using excitons as intermediate media; the intensity of light emitted at the optical output is proportional to the intensity of light at the optical input and is controlled electronically by the gate. We demonstrate a contrast ratio of 30 between an on state and an off state of the EXOT and its operation at speeds greater than 1GHz. Our studies also demonstrate high-speed control of both the flux and the potential energy of excitons on a time scale much shorter than the exciton lifetime.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  2. K. Wakita, Semiconductor Optical Modulators (Kluwer Academic, 1998).
  3. B. F. Aull, K. B. Nichols, P. A. Maki, S. C. Palmateer, E. R. Brown, and T. A. Lind, Appl. Phys. Lett. 63, 1555 (1993).
    [CrossRef]
  4. L. V. Butov, J. Phys. Condens. Matter 16, R1577 (2004).
    [CrossRef]
  5. M. Hagn, A. Zrenner, G. Böhm, and G. Weimann, Appl. Phys. Lett. 67, 232 (1995).
    [CrossRef]
  6. V. Negoita, D. W. Snoke, and K. Eberl, Phys. Rev. B 60, 2661 (1999).
    [CrossRef]
  7. A. V. Larionov, V. B. Timofeev, J. Hvam, and K. Soerensen, JETP 90, 1093 (2000).
    [CrossRef]
  8. L. V. Butov, A. C. Gossard, and D. S. Chemla, Nature 418, 751 (2002).
    [CrossRef] [PubMed]
  9. Z. Vörös, R. Balili, D. W. Snoke, L. Pfeiffer, and K. West, Phys. Rev. Lett. 94, 226401 (2005).
    [CrossRef] [PubMed]
  10. A. L. Ivanov, L. E. Smallwood, A. T. Hammack, S. Yang, L. V. Butov, and A. C. Gossard, Europhys. Lett. 73, 920 (2006).
    [CrossRef]
  11. A. Gartner, A. W. Holleithner, J. P. Kotthaus, and D. Schul, Appl. Phys. Lett. 89, 052108 (2006).
    [CrossRef]
  12. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. B 32, 1043 (1985).
    [CrossRef]
  13. A. T. Hammack, N. A. Gippius, S. Yang, G. O. Andreev, L. V. Butov, M. Hanson, and A. C. Gossard, J. Appl. Phys. 99, 066104 (2006).
    [CrossRef]
  14. J. Buchanan, Signal and Power Integrity in Digital Systems: TTL, CMOS, & BiCMOS (McGraw-Hill, 1996).
  15. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984).
    [CrossRef]
  16. M. H. Szymanska and P. B. Littlewood, Phys. Rev. B 67, 193305 (2003).
    [CrossRef]

2006 (3)

A. L. Ivanov, L. E. Smallwood, A. T. Hammack, S. Yang, L. V. Butov, and A. C. Gossard, Europhys. Lett. 73, 920 (2006).
[CrossRef]

A. Gartner, A. W. Holleithner, J. P. Kotthaus, and D. Schul, Appl. Phys. Lett. 89, 052108 (2006).
[CrossRef]

A. T. Hammack, N. A. Gippius, S. Yang, G. O. Andreev, L. V. Butov, M. Hanson, and A. C. Gossard, J. Appl. Phys. 99, 066104 (2006).
[CrossRef]

2005 (1)

Z. Vörös, R. Balili, D. W. Snoke, L. Pfeiffer, and K. West, Phys. Rev. Lett. 94, 226401 (2005).
[CrossRef] [PubMed]

2004 (1)

L. V. Butov, J. Phys. Condens. Matter 16, R1577 (2004).
[CrossRef]

2003 (1)

M. H. Szymanska and P. B. Littlewood, Phys. Rev. B 67, 193305 (2003).
[CrossRef]

2002 (1)

L. V. Butov, A. C. Gossard, and D. S. Chemla, Nature 418, 751 (2002).
[CrossRef] [PubMed]

2000 (1)

A. V. Larionov, V. B. Timofeev, J. Hvam, and K. Soerensen, JETP 90, 1093 (2000).
[CrossRef]

1999 (1)

V. Negoita, D. W. Snoke, and K. Eberl, Phys. Rev. B 60, 2661 (1999).
[CrossRef]

1995 (1)

M. Hagn, A. Zrenner, G. Böhm, and G. Weimann, Appl. Phys. Lett. 67, 232 (1995).
[CrossRef]

1993 (1)

B. F. Aull, K. B. Nichols, P. A. Maki, S. C. Palmateer, E. R. Brown, and T. A. Lind, Appl. Phys. Lett. 63, 1555 (1993).
[CrossRef]

1985 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. B 32, 1043 (1985).
[CrossRef]

1984 (1)

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984).
[CrossRef]

Appl. Phys. Lett. (3)

B. F. Aull, K. B. Nichols, P. A. Maki, S. C. Palmateer, E. R. Brown, and T. A. Lind, Appl. Phys. Lett. 63, 1555 (1993).
[CrossRef]

M. Hagn, A. Zrenner, G. Böhm, and G. Weimann, Appl. Phys. Lett. 67, 232 (1995).
[CrossRef]

A. Gartner, A. W. Holleithner, J. P. Kotthaus, and D. Schul, Appl. Phys. Lett. 89, 052108 (2006).
[CrossRef]

Europhys. Lett. (1)

A. L. Ivanov, L. E. Smallwood, A. T. Hammack, S. Yang, L. V. Butov, and A. C. Gossard, Europhys. Lett. 73, 920 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984).
[CrossRef]

J. Appl. Phys. (1)

A. T. Hammack, N. A. Gippius, S. Yang, G. O. Andreev, L. V. Butov, M. Hanson, and A. C. Gossard, J. Appl. Phys. 99, 066104 (2006).
[CrossRef]

J. Phys. Condens. Matter (1)

L. V. Butov, J. Phys. Condens. Matter 16, R1577 (2004).
[CrossRef]

JETP (1)

A. V. Larionov, V. B. Timofeev, J. Hvam, and K. Soerensen, JETP 90, 1093 (2000).
[CrossRef]

Nature (1)

L. V. Butov, A. C. Gossard, and D. S. Chemla, Nature 418, 751 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (3)

V. Negoita, D. W. Snoke, and K. Eberl, Phys. Rev. B 60, 2661 (1999).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. B 32, 1043 (1985).
[CrossRef]

M. H. Szymanska and P. B. Littlewood, Phys. Rev. B 67, 193305 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

Z. Vörös, R. Balili, D. W. Snoke, L. Pfeiffer, and K. West, Phys. Rev. Lett. 94, 226401 (2005).
[CrossRef] [PubMed]

Other (3)

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

K. Wakita, Semiconductor Optical Modulators (Kluwer Academic, 1998).

J. Buchanan, Signal and Power Integrity in Digital Systems: TTL, CMOS, & BiCMOS (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Principle of the EXOT. a, CQW diagram. b, Spectrum of indirect excitons at different applied voltages. c, Energy of indirect excitons as a function of applied voltage. d, Design schematic for the EXOT. e, Top view of the device.

Fig. 2
Fig. 2

Experimental proof of principle of the EXOT. a, Emission image at the EXOT in the off state, V g = 0 . b, Emission image at the EXOT in the on state, V g = 5 V . Excitons travel from the source to the drain when the EXOT is in the on state. Images were taken by CCD, using an interference filter with transmission band 790 ± 10 nm . c, Output spectra for the EXOT in the off state, V g = 0 (dotted), and on state, V g = 5 V (solid), demonstrating on/off contrast. The emitted light was collected at the drain region by using the spectrometer slit for the spatial filtering. e, Similar data for device 2 with interference filtering. The interference filter was built to fit to the spectral area of the EXOT output shown by the gray box in f–h. f, Filtered broad range spectra of the off/on states. g, Interference filter transmission. h, Broad range spectra of the off/on states without the interference filter. d, Time-resolved output intensity (measured at 791 nm ), demonstrating the switching speed of the EXOT. The thin line is a guide for the eye. All data except those in panel e refer to device 1. Input laser power P input = 430 μ W , T = 1.4 K , V s = 2 V , and V d = 3 V for the data.

Fig. 3
Fig. 3

Characterization of the EXOT. a, Integrated output intensity of the EXOT as a function of gate voltage V g normalized to that of the EXOT in the off state at V g = 0 . Input photon power P input = 435 μ W . b, Modeled profile of potential energy of the indirect excitons (left axis) and electric field F z (right axis) for V g = 0 5 V . c, Integrated output intensity for the EXOT in the off state (triangles), V g = 0 , and on state (circles), V g = 5 V , as a function of P input . Thin curves are a guide for the eye. T = 1.4 K , V s = 2 V , V d = 3 V , and spectral integration range is 789 794 nm for the data.

Metrics