Abstract

We report the experimental demonstration of all-optical format conversion by exploiting the cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) in a periodically poled lithium niobate (PPLN) waveguide assisted by the reflective semiconductor optical amplifier (RSOA)-based active mode-locking. 10 and 20Gbits format conversions from non-return-to-zero (NRZ) to return-to-zero (RZ) are successfully observed. Two schemes with either the NRZ signal or the pump optical clock set at the quasi-phase matching (QPM) wavelength are both verified in the experiment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C. S. Park, J. Lightwave Technol. 23, 834 (2005).
    [CrossRef]
  2. L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
    [CrossRef]
  3. J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, IEEE Photon. Technol. Lett. 18, 2093 (2006).
    [CrossRef]
  4. J. Wang, J. Sun, and Q. Sun, Opt. Express 15, 1690 (2007).
    [CrossRef] [PubMed]
  5. J. Wang, J. Sun, and Q. Sun, Opt. Lett. 32, 1477 (2007).
    [CrossRef] [PubMed]
  6. Y. Yu, X. Zhang, and D. Huang, IEEE Photon. Technol. Lett. 18, 2356 (2006).
    [CrossRef]
  7. W. Mao, Y. Li, M. A. Mumin, and G. Li, IEEE Photon. Technol. Lett. 14, 873 (2002).
    [CrossRef]
  8. A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, Electron. Lett. 34, 1958 (1998).
    [CrossRef]

2007 (2)

2006 (2)

Y. Yu, X. Zhang, and D. Huang, IEEE Photon. Technol. Lett. 18, 2356 (2006).
[CrossRef]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, IEEE Photon. Technol. Lett. 18, 2093 (2006).
[CrossRef]

2005 (1)

2003 (1)

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

2002 (1)

W. Mao, Y. Li, M. A. Mumin, and G. Li, IEEE Photon. Technol. Lett. 14, 873 (2002).
[CrossRef]

1998 (1)

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, Electron. Lett. 34, 1958 (1998).
[CrossRef]

Baby, V.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

Ellis, A. D.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, Electron. Lett. 34, 1958 (1998).
[CrossRef]

Fejer, M. M.

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, IEEE Photon. Technol. Lett. 18, 2093 (2006).
[CrossRef]

Glesk, I.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

Huang, D.

Y. Yu, X. Zhang, and D. Huang, IEEE Photon. Technol. Lett. 18, 2356 (2006).
[CrossRef]

Kashyap, R.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, Electron. Lett. 34, 1958 (1998).
[CrossRef]

Kelly, A. E.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, Electron. Lett. 34, 1958 (1998).
[CrossRef]

Kim, Y. J.

Kurz, J. R.

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, IEEE Photon. Technol. Lett. 18, 2093 (2006).
[CrossRef]

Lee, C. G.

Lee, H. J.

Li, G.

W. Mao, Y. Li, M. A. Mumin, and G. Li, IEEE Photon. Technol. Lett. 14, 873 (2002).
[CrossRef]

Li, Y.

W. Mao, Y. Li, M. A. Mumin, and G. Li, IEEE Photon. Technol. Lett. 14, 873 (2002).
[CrossRef]

Mao, W.

W. Mao, Y. Li, M. A. Mumin, and G. Li, IEEE Photon. Technol. Lett. 14, 873 (2002).
[CrossRef]

Moodie, D. G.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, Electron. Lett. 34, 1958 (1998).
[CrossRef]

Mumin, M. A.

W. Mao, Y. Li, M. A. Mumin, and G. Li, IEEE Photon. Technol. Lett. 14, 873 (2002).
[CrossRef]

Nesset, D.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, Electron. Lett. 34, 1958 (1998).
[CrossRef]

Park, C. S.

Pitcher, D.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, Electron. Lett. 34, 1958 (1998).
[CrossRef]

Prucnal, P. R.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

Sun, J.

Sun, Q.

Wang, B. C.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

Wang, J.

Xu, L.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

Yu, Y.

Y. Yu, X. Zhang, and D. Huang, IEEE Photon. Technol. Lett. 18, 2356 (2006).
[CrossRef]

Zhang, X.

Y. Yu, X. Zhang, and D. Huang, IEEE Photon. Technol. Lett. 18, 2356 (2006).
[CrossRef]

Electron. Lett. (1)

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, Electron. Lett. 34, 1958 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Yu, X. Zhang, and D. Huang, IEEE Photon. Technol. Lett. 18, 2356 (2006).
[CrossRef]

W. Mao, Y. Li, M. A. Mumin, and G. Li, IEEE Photon. Technol. Lett. 14, 873 (2002).
[CrossRef]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, IEEE Photon. Technol. Lett. 18, 2093 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for PPLN + RSOA -based all-optical NRZ-to-RZ format conversion.

Fig. 2
Fig. 2

Measured optical spectra for NRZ-to-RZ format conversion. (a) Input NRZ signal at 10 Gbit s . (b) PRZ signal at 10 Gbit s . (c) Input NRZ signal at 20 Gbit s . (d) PRZ signal at 20 Gbit s . (e) Enlarged spectrum of pump optical clock at 20 GHz . (f), (g) Output spectra from PPLN for cSHG/DFG-based NRZ-to-RZ format conversion at 20 Gbit s . (f) The pump optical clock is set at the SHG QPM wavelength. (g) The NRZ signal is set at the SHG QPM wavelength.

Fig. 3
Fig. 3

Temporal waveforms of input NRZ signal, PRZ signal, pump optical clock, and converted RZ idler for NRZ-to-RZ format conversion. (a) 10 Gbit s . (b) 20 Gbit s . The pump optical clock is set at the SHG QPM wavelength.

Fig. 4
Fig. 4

Temporal waveforms of input NRZ signal and converted RZ idler for NRZ-to-RZ format conversion. (a) 10 Gbit s . (b) 20 Gbit s . The NRZ signal is set at the SHG QPM wavelength.

Fig. 5
Fig. 5

Eye diagrams of input NRZ signal and converted RZ idler for NRZ-to-RZ format conversion at 10 Gbit s . The NRZ signal is set at the SHG QPM wavelength.

Metrics