Abstract

For what we believe to be the first time, an optical resonance transition rubidium laser (5P1225S122) has been demonstrated with a hydrocarbon-free buffer gas. Prior demonstrations of alkali resonance transition lasers have used ethane as either the buffer gas or a buffer gas component to promote rapid fine-structure mixing. However, our experience suggests that the alkali vapor reacts with the ethane producing carbon as one of the reaction products. This degrades long term laser reliability. Our recent experimental results with a “clean” helium-only buffer gas system demonstrate all the advantages of the original alkali laser system, but without the reliability issues associated with the use of ethane.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, Opt. Lett. 28, 2336 (2003).
    [CrossRef] [PubMed]
  2. R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, Opt. Lett. 31, 353 (2006).
    [CrossRef] [PubMed]
  3. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. O. Merkle, J. Opt. Soc. Am. B 21, 2151 (2004).
    [CrossRef]
  4. T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, Electron. Lett. 41, 47 (2005).
    [CrossRef]
  5. Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
    [CrossRef]
  6. B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
    [CrossRef]
  7. Z. Konefal, Opt. Commun. 164, 95 (1999).
    [CrossRef]
  8. FactSage 5.5trade/FactWebtrade, CRCT, Ecole Polytechnique, Montreal, Canada (2007).
  9. A. Andalkar and R. B. Warrington, Phys. Rev. A 65, 032708 (2002).
    [CrossRef]
  10. M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
    [CrossRef]
  11. A. Gallagher, Phys. Rev. 172, 88 (1968).
    [CrossRef]

2007 (1)

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
[CrossRef]

2006 (2)

R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, Opt. Lett. 31, 353 (2006).
[CrossRef] [PubMed]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

2005 (1)

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, Electron. Lett. 41, 47 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (1)

A. Andalkar and R. B. Warrington, Phys. Rev. A 65, 032708 (2002).
[CrossRef]

1999 (1)

Z. Konefal, Opt. Commun. 164, 95 (1999).
[CrossRef]

1997 (1)

M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
[CrossRef]

1968 (1)

A. Gallagher, Phys. Rev. 172, 88 (1968).
[CrossRef]

Andalkar, A.

A. Andalkar and R. B. Warrington, Phys. Rev. A 65, 032708 (2002).
[CrossRef]

Beach, R. J.

Dubinskii, M. A.

Ehrenreich, T.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
[CrossRef]

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, Electron. Lett. 41, 47 (2005).
[CrossRef]

Flusche, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
[CrossRef]

Fukuoka, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

Gallagher, A.

A. Gallagher, Phys. Rev. 172, 88 (1968).
[CrossRef]

Gates, G. D.

M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
[CrossRef]

Havko, A.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
[CrossRef]

Hiruma, T.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

Kan, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

Kanz, V. K.

Kasamatsu, T.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

Knize, R. J.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
[CrossRef]

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, Electron. Lett. 41, 47 (2005).
[CrossRef]

Konefal, Z.

Z. Konefal, Opt. Commun. 164, 95 (1999).
[CrossRef]

Koval, N.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
[CrossRef]

Krupke, W. F.

Kubomura, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

Maes, C.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
[CrossRef]

Matsuoka, S.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

Meeker, T.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
[CrossRef]

Merkle, L. O.

Miron, E.

M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
[CrossRef]

Miyajima, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

Niigaki, M.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

Page, R. H.

Payne, S. A.

Phipps, S. P.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, Electron. Lett. 41, 47 (2005).
[CrossRef]

Romalis, M. V.

M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
[CrossRef]

Takekoshi, T.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, Electron. Lett. 41, 47 (2005).
[CrossRef]

Wang, Y.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

Warrington, R. B.

A. Andalkar and R. B. Warrington, Phys. Rev. A 65, 032708 (2002).
[CrossRef]

Worker, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
[CrossRef]

Zhdanov, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
[CrossRef]

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, Electron. Lett. 41, 47 (2005).
[CrossRef]

Zheng, Y.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, Appl. Phys. Lett. 88, 141112 (2006).
[CrossRef]

Electron. Lett. (1)

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, Electron. Lett. 41, 47 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, Opt. Commun. 270, 353 (2007).
[CrossRef]

Z. Konefal, Opt. Commun. 164, 95 (1999).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

A. Gallagher, Phys. Rev. 172, 88 (1968).
[CrossRef]

Phys. Rev. A (2)

A. Andalkar and R. B. Warrington, Phys. Rev. A 65, 032708 (2002).
[CrossRef]

M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
[CrossRef]

Other (1)

FactSage 5.5trade/FactWebtrade, CRCT, Ecole Polytechnique, Montreal, Canada (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup used in our demonstrations. The laser cavity mirrors have 20 cm radii of curvature and are both concave (cc). H.R. stands for high reflector, O.C. for output coupler, and FL for focal length.

Fig. 2
Fig. 2

Rb laser output power for various pump powers plotted against output coupler reflectivity. Solid curves represent model predictions. From top to bottom, pump powers are 1.81, 1.53, 1.23, 0.93, 0.63, and 0.47 W .

Fig. 3
Fig. 3

Rb laser output power with varying cell temperature using a 0.19 reflectivity output coupler. Solid curve shows model prediction.

Fig. 4
Fig. 4

Rb laser output power for various output couplers plotted against pump power. Solid curves represent model predictions. From top to bottom, the reflectivities are 0.19, 0.46, 0.58, 0.74, and 0.85.

Metrics