Abstract

The design of the noncollinear acousto-optic tunable filter (AOTF) is commonly based on the parallel tangents momentum-matching condition. Previous studies either have used an approximation of the birefringence of the interaction material or have ignored the rotatory property of TeO2. These approaches would obviously decrease the accuracy of designing an acousto-optic tunable filter (AOTF). We introduce an analysis method of calculating the optimum incident optical angle. Besides, an appropriate optical wedge on the output optical facet is designed to reduce the wavelength dependence of the diffracted beam angle, which is very significant in practical applications of AOTF.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wan, Piezoelectrics Acousto-optics, 28, 645 (2006).
  2. N. Gupta and R. Dahmani, Opt. Eng. 41, 1033 (2002).
    [CrossRef]
  3. N. Gupta and V. B. Voloshinov, Appl. Opt. 46, 1081 (2007).
    [CrossRef] [PubMed]
  4. I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
    [CrossRef]
  5. P. A. Gass and J. R. Sambles, Opt. Lett. 16, 429 (1991).
    [CrossRef] [PubMed]
  6. N. Uchida, Phys. Rev. B 4, 3736 (1971).
    [CrossRef]
  7. D. R. Suhre and J. G. Throdore, Appl. Opt. 35, 4494 (1996).
    [CrossRef] [PubMed]

2007

2002

N. Gupta and R. Dahmani, Opt. Eng. 41, 1033 (2002).
[CrossRef]

1996

1991

1974

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

1971

N. Uchida, Phys. Rev. B 4, 3736 (1971).
[CrossRef]

Chang, I. C.

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Dahmani, R.

N. Gupta and R. Dahmani, Opt. Eng. 41, 1033 (2002).
[CrossRef]

Gass, P. A.

Gupta, N.

Sambles, J. R.

Suhre, D. R.

Throdore, J. G.

Uchida, N.

N. Uchida, Phys. Rev. B 4, 3736 (1971).
[CrossRef]

Voloshinov, V. B.

Wan, F.

F. Wan, Piezoelectrics Acousto-optics, 28, 645 (2006).

Appl. Opt.

Appl. Phys. Lett.

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Opt. Eng.

N. Gupta and R. Dahmani, Opt. Eng. 41, 1033 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. B

N. Uchida, Phys. Rev. B 4, 3736 (1971).
[CrossRef]

Other

F. Wan, Piezoelectrics Acousto-optics, 28, 645 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Wave vector diagram of the noncollinear AOTF considering the rotatory property. [001] axis is the optic axis.

Fig. 2
Fig. 2

Relationships between θ a and θ i from several designs. The center optical wavelength is 0.6328 μ m for curves (1) and (2).

Fig. 3
Fig. 3

Optimum incident polar angle dependence on the optical wavelength. The selected θ a is 80°.

Fig. 4
Fig. 4

Geometrical relationship between the input and output facet. θ w is an optical wedge angle.

Fig. 5
Fig. 5

Shift of the diffracted beam with optical wavelength at a certain θ w . At 0.6328 μ m , the diffracted beam angle in air is assumed to be the zero point for convenience of comparing the relative angle shift Δ β at different θ w .

Fig. 6
Fig. 6

Diffracted beam spread dependence on the bandpass center wavelength at different θ w . The acousto-optic interaction length is 4 mm . θ i is 23.804°.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n i = [ cos 2 θ i [ n o 2 ( 1 + σ ) 2 ] + sin 2 θ i n e 2 ] 1 2 ,
n d = [ cos 2 θ d [ n o 2 ( 1 σ ) 2 ] + sin 2 θ d n o 2 ] 1 2 ,
tan θ d = ( n o n e ) 2 [ ( 1 + σ ) 2 ( 1 σ ) 2 ] tan θ i .
tan ( θ a ) = ( n i sin θ i n d sin θ d ) ( n i cos θ i n d cos θ d ) .
tan ( θ a ) = tan θ i { [ n o 4 n e 2 ( 1 + σ ) 6 tan 2 θ i + n e 6 ( 1 σ 2 ) 2 ] 1 2 [ n o 4 ( 1 + σ ) 6 tan 2 θ i + n o 4 n e 2 ( 1 + σ ) 4 ] 1 2 } [ n o 4 n e 2 ( 1 + σ ) 6 tan 2 θ i + n e 6 ( 1 σ 2 ) 2 ] 1 2 [ n o 2 n e 4 ( 1 σ ) 4 ( 1 + σ ) 2 tan 2 θ i + n e 6 ( 1 σ ) 4 ] 1 2 .
tan ( θ a ) = { ( n e n o ) + { ( n e n o ) 2 + [ ( n e n o ) 2 + 1 ] ( n o n e ) 2 tan 2 θ i + ( n o n e ) 4 tan 4 θ i } 1 2 } [ ( n o n e ) tan θ i ] .
tan ( θ a ) = ( 2 + tan 2 θ i ) tan θ i .
sin β = n d sin ( θ i θ d θ w ) .

Metrics