Abstract

We report a study of the scaling and limits to pulse energy in an all-normal-dispersion femtosecond fiber laser. Theoretical calculations show that operation at large normal cavity dispersion is possible in the presence of large nonlinear phase shifts, owing to strong pulse shaping by spectral filtering of the chirped pulse in the laser. Stable pulses are possible with energies of tens of nanojoules. Experimental results from Yb-doped fiber lasers agree with the trends of numerical simulations. Stable and self-starting pulses are generated with energies above 20 nJ, and these can be dechirped to <200fs duration. Femtosecond pulses with peak powers near 100kW are thus available from this simple and practical design.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tamura, J. Jacobson, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 18, 1080 (1993).
    [CrossRef] [PubMed]
  2. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  3. J. R. Buckley, F. O. Ilday, T. Sosnowski, and F. W. Wise, Opt. Lett. 30, 1888 (2005).
    [CrossRef] [PubMed]
  4. M. J. Messerly, J. W. Dawson, J. An, D. Kim, and C. P. J. Barty, in Conference On Lasers and Electro-Optics, 2006 OSA Technical Digest Series (Optical Society of America, 2006), paper CThC7.
  5. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006).
    [CrossRef] [PubMed]
  6. B. Proctor, E. Westwig, and F. Wise, Opt. Lett. 18, 1654 (1993).
    [CrossRef] [PubMed]
  7. F. O. Ilday, "Theory and practice of high-energy femtosecond fiber lasers," Ph.D. dissertation (Cornell University, 2004).
  8. K. Tamura and M. Nakazawa, Appl. Phys. Lett. 67, 3691 (1995).
    [CrossRef]

2006

2005

2004

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

1995

K. Tamura and M. Nakazawa, Appl. Phys. Lett. 67, 3691 (1995).
[CrossRef]

1993

An, J.

M. J. Messerly, J. W. Dawson, J. An, D. Kim, and C. P. J. Barty, in Conference On Lasers and Electro-Optics, 2006 OSA Technical Digest Series (Optical Society of America, 2006), paper CThC7.

Barty, C. P. J.

M. J. Messerly, J. W. Dawson, J. An, D. Kim, and C. P. J. Barty, in Conference On Lasers and Electro-Optics, 2006 OSA Technical Digest Series (Optical Society of America, 2006), paper CThC7.

Buckley, J.

Buckley, J. R.

J. R. Buckley, F. O. Ilday, T. Sosnowski, and F. W. Wise, Opt. Lett. 30, 1888 (2005).
[CrossRef] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Chong, A.

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Dawson, J. W.

M. J. Messerly, J. W. Dawson, J. An, D. Kim, and C. P. J. Barty, in Conference On Lasers and Electro-Optics, 2006 OSA Technical Digest Series (Optical Society of America, 2006), paper CThC7.

Fujimoto, J. G.

Haus, H. A.

Ilday, F. O.

J. R. Buckley, F. O. Ilday, T. Sosnowski, and F. W. Wise, Opt. Lett. 30, 1888 (2005).
[CrossRef] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

F. O. Ilday, "Theory and practice of high-energy femtosecond fiber lasers," Ph.D. dissertation (Cornell University, 2004).

Ippen, E. P.

Jacobson, J.

Kim, D.

M. J. Messerly, J. W. Dawson, J. An, D. Kim, and C. P. J. Barty, in Conference On Lasers and Electro-Optics, 2006 OSA Technical Digest Series (Optical Society of America, 2006), paper CThC7.

Messerly, M. J.

M. J. Messerly, J. W. Dawson, J. An, D. Kim, and C. P. J. Barty, in Conference On Lasers and Electro-Optics, 2006 OSA Technical Digest Series (Optical Society of America, 2006), paper CThC7.

Nakazawa, M.

K. Tamura and M. Nakazawa, Appl. Phys. Lett. 67, 3691 (1995).
[CrossRef]

Proctor, B.

Renninger, W.

Sosnowski, T.

Tamura, K.

Westwig, E.

Wise, F.

Wise, F. W.

J. R. Buckley, F. O. Ilday, T. Sosnowski, and F. W. Wise, Opt. Lett. 30, 1888 (2005).
[CrossRef] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. Tamura and M. Nakazawa, Appl. Phys. Lett. 67, 3691 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Other

M. J. Messerly, J. W. Dawson, J. An, D. Kim, and C. P. J. Barty, in Conference On Lasers and Electro-Optics, 2006 OSA Technical Digest Series (Optical Society of America, 2006), paper CThC7.

F. O. Ilday, "Theory and practice of high-energy femtosecond fiber lasers," Ph.D. dissertation (Cornell University, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Numerical simulation results. Top, pulse duration evolution for lasers with 25 MHz (solid curve, 12 nJ pulse energy) and 12.5 MHz (dashed curve, 26 nJ pulse energy) repetition rates; middle and bottom, 25 and 12.5 MHz laser spectra at (a), (d) beginning of the first SMF, (b), (e) beginning of the gain fiber, and (c), (f) output. NPE, nonlinear polarization evolution; SF, spectral filter.

Fig. 2
Fig. 2

Schematic of ANDi fiber laser. QWP, quarter-wave plate; HWP, half-wave plate; PBS, polarizing beam splitter; WDM, wavelength-division multiplexer.

Fig. 3
Fig. 3

Output of the 25 MHz laser at 12 nJ energy: (a) spectrum, (b) dechirped autocorrelation ( 240 fs ) and the autocorrelation of the zero-phase Fourier transform of the spectrum ( 210 fs , inset), (c) simulated spectrum, and (d) simulated dechirped pulse ( 225 fs ) .

Fig. 4
Fig. 4

Output of the 12.5 MHz laser at 26 nJ energy: (a) spectra transmitted (dotted curve) and rejected (solid curve) from the NPE port, (b) dechirped autocorrelation ( 165 fs ) and the autocorrelation of the zero-phase Fourier-transform of the spectrum ( 140 fs , inset), (c) simulated spectrum, and (d) simulated dechirped pulse ( 195 fs ) .

Metrics