Abstract

We report what is believed to be the first observation of second-harmonic generation by type I phase matching the bulk χxyz(2) (d14) nonlinear coefficient using Bragg reflection waveguides. Second-harmonic power of 0.7μW was observed for a pump wavelength of 1587.8nm with an average power of 25.2mW and a pulse width of 2ps at a repetition rate of 75.6MHz. An order of magnitude enhancement between the phase-matched and un-phase-matched second-harmonic conversion efficiency has been observed. Conversion efficiency at the phase-matched wavelengths was 0.001%. The bandwidth of the second harmonic was found to be equal to 0.43nm, agreeing with the theoretical predictions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Haidar, N. Forget, and E. Rosencher, IEEE J. Quantum Electron. 39, 569 (2003).
    [CrossRef]
  2. C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. H. Harris, J. Cryst. Growth 227, 183 (1999).
  3. A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, and E. Rosencher, Appl. Phys. Lett. 72, 2942 (1998).
    [CrossRef]
  4. D. Faccio, F. Bragheri, and M. Cherchi, J. Opt. Soc. Am. B 21, 296 (2004).
    [CrossRef]
  5. A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, Opt. Lett. 25, 1370 (2000).
    [CrossRef]
  6. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, Opt. Lett. 29, 1912 (2004).
    [CrossRef] [PubMed]
  7. A. S. Helmy, Opt. Express 14, 1243 (2006).
    [CrossRef] [PubMed]
  8. P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
    [CrossRef]
  9. B. R. West and A. S. Helmy, IEEE J. Sel. Top. Quantum Electron. 12, 431 (2006).
    [CrossRef]
  10. S. Adachi, J. Appl. Phys. 58, R1 (1985).
    [CrossRef]

2006 (2)

A. S. Helmy, Opt. Express 14, 1243 (2006).
[CrossRef] [PubMed]

B. R. West and A. S. Helmy, IEEE J. Sel. Top. Quantum Electron. 12, 431 (2006).
[CrossRef]

2004 (2)

2003 (1)

R. Haidar, N. Forget, and E. Rosencher, IEEE J. Quantum Electron. 39, 569 (2003).
[CrossRef]

2000 (1)

1999 (1)

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. H. Harris, J. Cryst. Growth 227, 183 (1999).

1998 (1)

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, and E. Rosencher, Appl. Phys. Lett. 72, 2942 (1998).
[CrossRef]

1985 (1)

S. Adachi, J. Appl. Phys. 58, R1 (1985).
[CrossRef]

1976 (1)

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Adachi, S.

S. Adachi, J. Appl. Phys. 58, R1 (1985).
[CrossRef]

Aitchison, J. S.

Arnold, J. M.

Becouarn, L.

Berger, V.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, and E. Rosencher, Appl. Phys. Lett. 72, 2942 (1998).
[CrossRef]

Bragheri, F.

Bravetti, P.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, and E. Rosencher, Appl. Phys. Lett. 72, 2942 (1998).
[CrossRef]

Brown, C. T. A.

Bryce, A. C.

Cherchi, M.

Delobel, L.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, and E. Rosencher, Appl. Phys. Lett. 72, 2942 (1998).
[CrossRef]

Ebert, C. B.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. H. Harris, J. Cryst. Growth 227, 183 (1999).

Ebrahimzadeh, M.

Eyres, L. A.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. H. Harris, J. Cryst. Growth 227, 183 (1999).

Faccio, D.

Fejer, M. M.

Fiore, A.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, and E. Rosencher, Appl. Phys. Lett. 72, 2942 (1998).
[CrossRef]

Forget, N.

R. Haidar, N. Forget, and E. Rosencher, IEEE J. Quantum Electron. 39, 569 (2003).
[CrossRef]

Gerard, B.

Haidar, R.

R. Haidar, N. Forget, and E. Rosencher, IEEE J. Quantum Electron. 39, 569 (2003).
[CrossRef]

Harris, J. H.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. H. Harris, J. Cryst. Growth 227, 183 (1999).

Harris, J. S.

Helmy, A. S.

Hutchings, D. C.

Janz, S.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, and E. Rosencher, Appl. Phys. Lett. 72, 2942 (1998).
[CrossRef]

Kleckner, T. C.

Kuo, P. S.

Lallier, E.

Levi, O.

Marsh, J. H.

Moutzouris, K.

Pinguet, T. J.

Rosencher, E.

R. Haidar, N. Forget, and E. Rosencher, IEEE J. Quantum Electron. 39, 569 (2003).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, and E. Rosencher, Appl. Phys. Lett. 72, 2942 (1998).
[CrossRef]

Stanley, C. R.

van der Meer, P.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, and E. Rosencher, Appl. Phys. Lett. 72, 2942 (1998).
[CrossRef]

Vodopyanov, K. L.

West, B. R.

B. R. West and A. S. Helmy, IEEE J. Sel. Top. Quantum Electron. 12, 431 (2006).
[CrossRef]

Yariv, A.

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Yeh, P.

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Appl. Phys. Lett. (1)

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, and E. Rosencher, Appl. Phys. Lett. 72, 2942 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Haidar, N. Forget, and E. Rosencher, IEEE J. Quantum Electron. 39, 569 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. R. West and A. S. Helmy, IEEE J. Sel. Top. Quantum Electron. 12, 431 (2006).
[CrossRef]

J. Appl. Phys. (1)

S. Adachi, J. Appl. Phys. 58, R1 (1985).
[CrossRef]

J. Cryst. Growth (1)

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. H. Harris, J. Cryst. Growth 227, 183 (1999).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Intensity of the total internal reflection mode at 1550 nm and the Bragg reflection mode at 775 nm in the Bragg reflection waveguide studied. Both are superimposed on a schematic of the structure. The dashed line is for the fundamental, while the solid line is for the SH.

Fig. 2
Fig. 2

SH power inside the sample by the output facet as a function of the pump wavelength for an input power of 15.3 mW inside the sample by the input facet.

Fig. 3
Fig. 3

Dependence of the SH power on that of the pump for two wavelengths, 1560 and 1587.8 nm .

Fig. 4
Fig. 4

Spectra of the input pump at two wavelengths (Fn1, 1578.8 nm and Fn2, 1587.8 nm ) and the spectra of the corresponding SH signals (SH1, 789.5 nm and SH2, 794 nm ).

Metrics