Abstract

We report a novel scheme to optimize the focusing condition for real-time, swept-source optical coherence microscopy. The axial and lateral behaviors of four-zone binary-phase spatial filters are presented numerically. A nearly constant axial intensity distribution along an extended depth of focus of 1.5mm and a lateral resolution of 5μm are experimentally verified. The A-line scan rate is up to 16kHz, yielding a frame rate of 25Hz and 640 lines per image.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Huber, M. Wojtkowski, and J. G. Fujimoto, J. Y. Jiang and A. E. Cable, Opt. Express 13, 10523 (2005).
    [CrossRef] [PubMed]
  2. T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, Opt. Lett. 31, 3585 (2006).
    [CrossRef] [PubMed]
  3. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nat. Phys. 3, 129 (2007).
    [CrossRef]
  4. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, Opt. Lett. 27, 243 (2002).
    [CrossRef]
  5. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, Opt. Lett. 31, 2450 (2006).
    [CrossRef] [PubMed]
  6. H. Wang and F. Gan, Appl. Opt. 40, 5658 (2001).
    [CrossRef]
  7. H. Wang, Z. Chen, and F. Gan, Opt. Eng. 40, 991 (2001).
    [CrossRef]
  8. C. Liu and S.-H. Park, Opt. Lett. 29, 1742 (2004).
    [CrossRef] [PubMed]
  9. H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, Appl. Phys. Lett. 89, 171102 (2006).
    [CrossRef]
  10. Min Gu, C. J. R. Sheppard, and X. Gan, J. Opt. Soc. Am. A 8, 1755 (1991).
    [CrossRef]

2007 (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nat. Phys. 3, 129 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (1)

2002 (1)

2001 (2)

H. Wang and F. Gan, Appl. Opt. 40, 5658 (2001).
[CrossRef]

H. Wang, Z. Chen, and F. Gan, Opt. Eng. 40, 991 (2001).
[CrossRef]

1991 (1)

Bachmann, A. H.

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nat. Phys. 3, 129 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, Opt. Lett. 31, 3585 (2006).
[CrossRef] [PubMed]

Cable, A. E.

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nat. Phys. 3, 129 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, Opt. Lett. 31, 3585 (2006).
[CrossRef] [PubMed]

Chen, Z.

Chong, T.

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Ding, Z.

Fujimoto, J. G.

Gan, F.

H. Wang and F. Gan, Appl. Opt. 40, 5658 (2001).
[CrossRef]

H. Wang, Z. Chen, and F. Gan, Opt. Eng. 40, 991 (2001).
[CrossRef]

Gan, X.

Gu, Min

Huber, R.

Jiang, J. Y.

Lasser, T.

Leitgeb, R. A.

Liu, C.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nat. Phys. 3, 129 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, Opt. Lett. 31, 3585 (2006).
[CrossRef] [PubMed]

Miao, X. S.

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Nelson, J. S.

Park, S.-H.

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nat. Phys. 3, 129 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, Opt. Lett. 31, 3585 (2006).
[CrossRef] [PubMed]

Ren, H.

Sheppard, C. J. R.

Shi, L.

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Steinmann, L.

Tan, W.

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Villiger, M.

Wang, H.

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

H. Wang and F. Gan, Appl. Opt. 40, 5658 (2001).
[CrossRef]

H. Wang, Z. Chen, and F. Gan, Opt. Eng. 40, 991 (2001).
[CrossRef]

Wojtkowski, M.

Yuan, G.

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Zhao, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Structure of the BPSF; (b) BPSF-optimized sample arm optics; (c) modulus of the axial beam profile: confocal case and cases optimized with BPSF I–IV; (d) modulus of transverse beam profile in the focal plane for the confocal case and cases optimized with BPSF I–IV; (e) modulus of amplitude image and phase contour plot in the focal region of the confocal system and (f) that optimized with BPSF II.

Fig. 2
Fig. 2

SS-OCM used for imaging experiments. SS, swept source; OC, optical circulator; PC, polarization controller; RM, reference mirror; PPM, programmable phase modulator; FSM, fast steering mirror; PD, photodetector; DAQ, data acquisition device; PC, personal computer.

Fig. 3
Fig. 3

Transverse signal profile at image plane obtained with BPSF-II-optimized systems. Element 5 is enclosed in the dotted box.

Fig. 4
Fig. 4

Real-time tomograms of 5 μ m latex calibration particles acquired with (a) the confocal system and (b) the BPSF-II-optimized systems.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P ( k , r ) = exp [ i Φ ( k , r ) ] ,
g ( k , ρ , u ) = 2 S ( k ) 0 1 f ̃ P ( k , r ) r J 0 ( ρ r ) exp [ ( 1 2 ) i u r 2 ] d r ,
f ̃ ( k , r ) = 2 π [ r 0 ( k ) ] 2 exp { ( 1 2 ) [ 2 π r r 0 ( k ) a 0 f o λ c ] 2 } ,
r 0 ( k ) = r co [ 2 ln V ( k ) ] 1 2 ,
g eff ( ρ , u ) = k min k max [ g ( k , ρ , u ) ] 2 d k ,

Metrics