Abstract

We propose a method for performing binary intensity and continuous phase modulation of beams with a spatial light modulator (SLM) and a low-pass spatial filtering 4-f system. With our method it is possible to avoid the use of phase masks in holographic data storage systems or to enhance the phase encoding of the SLM by making it capable of binary amplitude modulation. The data storage capabilities and the limitations of the method are studied.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  2. J. Reményi, P. Várhegyi, L. Domján, P. Koppa, and E. Lorincz, Appl. Opt. 42, 3428 (2003).
    [CrossRef] [PubMed]
  3. J.-S. Jang and D.-H. Shin, Opt. Lett. 26, 1797 (2001).
    [CrossRef]
  4. M. P. Bernal, G. W. Burr, and H. J. Coufal, Appl. Opt. 37, 2094 (1998).
    [CrossRef]
  5. M. J. O'Callaghan, J. R. McNeil, C. Walker, and M. A. Handschy, Proc. SPIE 6282, 628208 (2006).
    [CrossRef]
  6. J. Hong, I. McMichael, and J. Ma, Opt. Lett. 21, 1694 (1996).
    [CrossRef] [PubMed]
  7. V. Bagnoud and J. D. Zuegel, Opt. Lett. 29, 295 (2004).
    [CrossRef] [PubMed]
  8. G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, Proc. SPIE 4092, 109 (2000).
    [CrossRef]
  9. Sz. Sajti, Á. Kerekes, P. S. Ramanujam, and E. Lorincz, Appl. Phys. B 75, 677 (2002).
    [CrossRef]

2006

M. J. O'Callaghan, J. R. McNeil, C. Walker, and M. A. Handschy, Proc. SPIE 6282, 628208 (2006).
[CrossRef]

2004

2003

2002

Sz. Sajti, Á. Kerekes, P. S. Ramanujam, and E. Lorincz, Appl. Phys. B 75, 677 (2002).
[CrossRef]

2001

2000

G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, Proc. SPIE 4092, 109 (2000).
[CrossRef]

1998

1996

Bagnoud, V.

Bernal, M. P.

Burr, G. W.

Coufal, H. J.

Domján, L.

Erdei, G.

G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, Proc. SPIE 4092, 109 (2000).
[CrossRef]

Fodor, J.

G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, Proc. SPIE 4092, 109 (2000).
[CrossRef]

Handschy, M. A.

M. J. O'Callaghan, J. R. McNeil, C. Walker, and M. A. Handschy, Proc. SPIE 6282, 628208 (2006).
[CrossRef]

Hong, J.

Jang, J.-S.

Kerekes, Á.

Sz. Sajti, Á. Kerekes, P. S. Ramanujam, and E. Lorincz, Appl. Phys. B 75, 677 (2002).
[CrossRef]

Koppa, P.

J. Reményi, P. Várhegyi, L. Domján, P. Koppa, and E. Lorincz, Appl. Opt. 42, 3428 (2003).
[CrossRef] [PubMed]

G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, Proc. SPIE 4092, 109 (2000).
[CrossRef]

Lorincz, E.

J. Reményi, P. Várhegyi, L. Domján, P. Koppa, and E. Lorincz, Appl. Opt. 42, 3428 (2003).
[CrossRef] [PubMed]

Sz. Sajti, Á. Kerekes, P. S. Ramanujam, and E. Lorincz, Appl. Phys. B 75, 677 (2002).
[CrossRef]

G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, Proc. SPIE 4092, 109 (2000).
[CrossRef]

Ma, J.

McMichael, I.

McNeil, J. R.

M. J. O'Callaghan, J. R. McNeil, C. Walker, and M. A. Handschy, Proc. SPIE 6282, 628208 (2006).
[CrossRef]

O'Callaghan, M. J.

M. J. O'Callaghan, J. R. McNeil, C. Walker, and M. A. Handschy, Proc. SPIE 6282, 628208 (2006).
[CrossRef]

Ramanujam, P. S.

Sz. Sajti, Á. Kerekes, P. S. Ramanujam, and E. Lorincz, Appl. Phys. B 75, 677 (2002).
[CrossRef]

Reményi, J.

Richter, P.

G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, Proc. SPIE 4092, 109 (2000).
[CrossRef]

Sajti, Sz.

Sz. Sajti, Á. Kerekes, P. S. Ramanujam, and E. Lorincz, Appl. Phys. B 75, 677 (2002).
[CrossRef]

Shin, D.-H.

Szarvas, G.

G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, Proc. SPIE 4092, 109 (2000).
[CrossRef]

Ujhelyi, F.

G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, Proc. SPIE 4092, 109 (2000).
[CrossRef]

Várhegyi, P.

J. Reményi, P. Várhegyi, L. Domján, P. Koppa, and E. Lorincz, Appl. Opt. 42, 3428 (2003).
[CrossRef] [PubMed]

G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, Proc. SPIE 4092, 109 (2000).
[CrossRef]

Walker, C.

M. J. O'Callaghan, J. R. McNeil, C. Walker, and M. A. Handschy, Proc. SPIE 6282, 628208 (2006).
[CrossRef]

Zuegel, J. D.

Appl. Opt.

Appl. Phys. B

Sz. Sajti, Á. Kerekes, P. S. Ramanujam, and E. Lorincz, Appl. Phys. B 75, 677 (2002).
[CrossRef]

Opt. Lett.

Proc. SPIE

M. J. O'Callaghan, J. R. McNeil, C. Walker, and M. A. Handschy, Proc. SPIE 6282, 628208 (2006).
[CrossRef]

G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, Proc. SPIE 4092, 109 (2000).
[CrossRef]

Other

H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical setup (4-f system) used for simulation and experiment.

Fig. 2
Fig. 2

Special pattern applied to the phase SLM necessary to realize ternary modulation. (a) Required ternary data pattern. (b) Gray-scale image applied to the SLM. The data pixels are represented on 4 × 4 SLM pixels.

Fig. 3
Fig. 3

Simulation of hybrid ternary modulation. (a) Image applied to the phase modulating SLM. (b) Central area of the SLM and CCD images. (c) Beam intensity distribution at the Fourier plane. The circle represents the low-pass filter aperture. (d) Inverse Fourier transform of the filtered image, sharing the intensity distribution in the CCD plane.

Fig. 4
Fig. 4

BER as a function of spatial filtering. Curves a, b, and c, simulation of the 2 × 2 , 3 × 3 , 4 × 4 representation in the 4-f systems respectively (see Fig. 1); curve d, simulation of the 2 × 2 representation in the holographic system (see Fig. 6); curve e, experimental result for the 2 × 2 representation in the 4-f system.

Fig. 5
Fig. 5

Effect of filtering to the shape of data pixels at the CCD plane. Simulation was done at different Nyquist cuts (see the percent values in the figure). Data pixels are represented by 2 × 2 SLM pixels.

Fig. 6
Fig. 6

Model of the optical system we used in our simulations to estimate BER in a real data storage application. The holographic arrangement is Fourier type, and the reference and object beams are coaxial. Identical optical elements are represented by the same symbols and are annotated only once. PBS, polarization beam splitter; λ 4 , quarter-wave plate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = C R ( 1 + R ) 2 I 2 ( 1 + t D I ) 2 .

Metrics