Abstract

It is found that when a light beam is incident obliquely on a thin film Fabry–Perot filter (FPF) from different incident media (air or substrate), the reflective beam will be shifted in both the forward and the backward directions. Based on this inverted spatial dispersion effect, two thin film FPFs with different directional lateral shifts are assembled to get a thin film superprism with a wider dispersion band. The thin film samples are fabricated as well as tested, and the results are in approximate agreement with numerical simulation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Carniglia and K. R. Brownstein, J. Opt. Soc. Am. 67, 121 (1977).
    [CrossRef]
  2. H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, Phys. Rev. E 62, 7330 (2000).
    [CrossRef]
  3. C.-F. Li, Phys. Rev. Lett. 91, 133903-1 (2003).
  4. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
    [CrossRef]
  5. X. Sun, P. Gu, M. Li, X. Liu, D. Wang, and J. Zhang, Opt. Express 14, 8470 (2006).
    [CrossRef] [PubMed]
  6. H. A. MacLeod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger, 1986).
    [CrossRef]
  7. A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 3283 (1994).
    [CrossRef] [PubMed]
  8. J. A. Kong, B. L. Wu, and Y. Zhang, Microwave Opt. Technol. Lett. 33, 136 (2002).
    [CrossRef]
  9. C. W. Hsue and T. Tamir, J. Opt. Soc. Am. A 2, 978 (1985).
    [CrossRef]
  10. S. Longhi, Phys. Rev. E 64, 037601-1 (2001).

2006

2003

C.-F. Li, Phys. Rev. Lett. 91, 133903-1 (2003).

2002

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

J. A. Kong, B. L. Wu, and Y. Zhang, Microwave Opt. Technol. Lett. 33, 136 (2002).
[CrossRef]

2001

S. Longhi, Phys. Rev. E 64, 037601-1 (2001).

2000

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, Phys. Rev. E 62, 7330 (2000).
[CrossRef]

1994

A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 3283 (1994).
[CrossRef] [PubMed]

1985

1977

Brownstein, K. R.

Carniglia, C. K.

Chiao, R. Y.

A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 3283 (1994).
[CrossRef] [PubMed]

Gu, P.

Hsue, C. W.

Karle, T.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

Kong, J. A.

J. A. Kong, B. L. Wu, and Y. Zhang, Microwave Opt. Technol. Lett. 33, 136 (2002).
[CrossRef]

Krauss, T. F.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

Kwok, C. W.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, Phys. Rev. E 62, 7330 (2000).
[CrossRef]

Lai, H. M.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, Phys. Rev. E 62, 7330 (2000).
[CrossRef]

Li, C.-F.

C.-F. Li, Phys. Rev. Lett. 91, 133903-1 (2003).

Li, M.

Liu, X.

Longhi, S.

S. Longhi, Phys. Rev. E 64, 037601-1 (2001).

Loo, Y. W.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, Phys. Rev. E 62, 7330 (2000).
[CrossRef]

MacLeod, H. A.

H. A. MacLeod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger, 1986).
[CrossRef]

Mazilu, M.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

Steinberg, A. M.

A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 3283 (1994).
[CrossRef] [PubMed]

Sun, X.

Tamir, T.

Wang, D.

Wu, B. L.

J. A. Kong, B. L. Wu, and Y. Zhang, Microwave Opt. Technol. Lett. 33, 136 (2002).
[CrossRef]

Wu, L.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

Xu, B. Y.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, Phys. Rev. E 62, 7330 (2000).
[CrossRef]

Zhang, J.

Zhang, Y.

J. A. Kong, B. L. Wu, and Y. Zhang, Microwave Opt. Technol. Lett. 33, 136 (2002).
[CrossRef]

IEEE J. Quantum Electron.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Microwave Opt. Technol. Lett.

J. A. Kong, B. L. Wu, and Y. Zhang, Microwave Opt. Technol. Lett. 33, 136 (2002).
[CrossRef]

Opt. Express

Phys. Rev. A

A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 3283 (1994).
[CrossRef] [PubMed]

Phys. Rev. E

S. Longhi, Phys. Rev. E 64, 037601-1 (2001).

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, Phys. Rev. E 62, 7330 (2000).
[CrossRef]

Phys. Rev. Lett.

C.-F. Li, Phys. Rev. Lett. 91, 133903-1 (2003).

Other

H. A. MacLeod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger, 1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of multilayer thin film stacks.

Fig. 2
Fig. 2

Reflective lateral shift of FPF when light is incident from air medium (solid curve) and substrate medium (dashed curve) at the incident angle with a tangential wave vector equal to that of 63.1° in air (s polarization).

Fig. 3
Fig. 3

Time-average intensity distribution on the x y plane in the incident medium at the wavelength of 734.8 nm when light incident from the air medium (a) and from the substrate medium (b) at the incident angle with tangential wave vector equal to that of 63.1° in air.

Fig. 4
Fig. 4

Sketch of enhanced superprism effect. (a) Calculated negative lateral shift when light is incident from air medium at incident angle of 63.1° (s polarization). (b) Calculated positive lateral shift when light is incident from substrate medium at incident angle of 62° (s polarization). (c) Calculated total lateral shift of the FPF assembly.

Fig. 5
Fig. 5

(a) Measured reflective lateral shift at different wavelengths. (b) Measured reflective beam spots at different wavelengths.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ B C ] = j = 1 m [ cos δ j i sin δ j η j i η j sin δ j cos δ j ] [ 1 η m + 1 ] ,
r = n 0 C B n 0 + C B = r e i ϕ r ( k y ) .
s = d ϕ r ( k x ) d k x ,
E i y = d k x exp [ i ( k x x + k z z ) ] ψ ( k x ) ,

Metrics