Abstract

The probe absorption spectra in single and multiple tripod systems formed when a weak σ polarized pump and a tunable π polarized probe interact with a Zeeman split FgFe=Fg1 atomic transition are characterized by two interfering stimulated Raman features separated by an electromagnetically induced absorption (EIA) peak at the line center. These Raman features can appear as either sharp stimulated emission peaks or electromagnetically induced transparency windows. In the multitripod systems, the EIA and stimulated emission peaks derive from the combined effects of interference between the stimulated Raman features and transfer of coherence from the excited to ground states.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Khitrova, P. R. Berman, and M. Sargent, J. Opt. Soc. Am. B 5, 160 (1988).
    [CrossRef]
  2. S. E. Harris, Phys. Today 50(7), 36 (1997).
    [CrossRef]
  3. A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. A 57, 2996 (1998).
    [CrossRef]
  4. A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, Phys. Rev. A 61, 013801 (1999).
    [CrossRef]
  5. Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, and C. Andreeva, Opt. Commun. 178, 103 (2000).
    [CrossRef]
  6. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Phys. Rev. A 61, 011802(R) (1999).
    [CrossRef]
  7. C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 67, 033807 (2003).
    [CrossRef]
  8. J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, J. Phys. B 40, 1117 (2007).
    [CrossRef]
  9. C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 69, 063802 (2004).
    [CrossRef]
  10. J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
    [CrossRef] [PubMed]

2007

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, J. Phys. B 40, 1117 (2007).
[CrossRef]

2004

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 69, 063802 (2004).
[CrossRef]

2003

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 67, 033807 (2003).
[CrossRef]

2000

Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, and C. Andreeva, Opt. Commun. 178, 103 (2000).
[CrossRef]

1999

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Phys. Rev. A 61, 011802(R) (1999).
[CrossRef]

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, Phys. Rev. A 61, 013801 (1999).
[CrossRef]

1998

A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. A 57, 2996 (1998).
[CrossRef]

1997

S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef]

1995

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

1988

Akulshin, A. M.

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, J. Phys. B 40, 1117 (2007).
[CrossRef]

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, Phys. Rev. A 61, 013801 (1999).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. A 57, 2996 (1998).
[CrossRef]

Alzetta, G.

Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, and C. Andreeva, Opt. Commun. 178, 103 (2000).
[CrossRef]

Andreeva, C.

Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, and C. Andreeva, Opt. Commun. 178, 103 (2000).
[CrossRef]

Barreiro, S.

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, Phys. Rev. A 61, 013801 (1999).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. A 57, 2996 (1998).
[CrossRef]

Berman, P. R.

Cartaleva, S.

Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, and C. Andreeva, Opt. Commun. 178, 103 (2000).
[CrossRef]

Dancheva, Y.

Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, and C. Andreeva, Opt. Commun. 178, 103 (2000).
[CrossRef]

Duffy, G. J.

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, J. Phys. B 40, 1117 (2007).
[CrossRef]

Friedmann, H.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 69, 063802 (2004).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 67, 033807 (2003).
[CrossRef]

Fuchs, J.

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, J. Phys. B 40, 1117 (2007).
[CrossRef]

Gea-Banacloche, J.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Goren, C.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 69, 063802 (2004).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 67, 033807 (2003).
[CrossRef]

Hannaford, P.

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, J. Phys. B 40, 1117 (2007).
[CrossRef]

Harris, S. E.

S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef]

Jin, S. Z.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Khitrova, G.

Lezama, A.

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, J. Phys. B 40, 1117 (2007).
[CrossRef]

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, Phys. Rev. A 61, 013801 (1999).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. A 57, 2996 (1998).
[CrossRef]

Li, Y. Q.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Lipsich, A.

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, Phys. Rev. A 61, 013801 (1999).
[CrossRef]

Rosenbluh, M.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 69, 063802 (2004).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 67, 033807 (2003).
[CrossRef]

Rowlands, W. J.

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, J. Phys. B 40, 1117 (2007).
[CrossRef]

Sargent, M.

Taichenachev, A. V.

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Phys. Rev. A 61, 011802(R) (1999).
[CrossRef]

Taslakov, M.

Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, and C. Andreeva, Opt. Commun. 178, 103 (2000).
[CrossRef]

Tumaikin, A. M.

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Phys. Rev. A 61, 011802(R) (1999).
[CrossRef]

Wilson-Gordon, A. D.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 69, 063802 (2004).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 67, 033807 (2003).
[CrossRef]

Xiao, M.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Yudin, V. I.

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Phys. Rev. A 61, 011802(R) (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

J. Fuchs, G. J. Duffy, W. J. Rowlands, A. Lezama, P. Hannaford, and A. M. Akulshin, J. Phys. B 40, 1117 (2007).
[CrossRef]

Opt. Commun.

Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, and C. Andreeva, Opt. Commun. 178, 103 (2000).
[CrossRef]

Phys. Rev. A

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Phys. Rev. A 61, 011802(R) (1999).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 67, 033807 (2003).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. A 57, 2996 (1998).
[CrossRef]

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, Phys. Rev. A 61, 013801 (1999).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 69, 063802 (2004).
[CrossRef]

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Phys. Today

S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy-level scheme for (a) and (b) F g = 2 F e = 1 in the D 2 line of Rb 85 , (c) and (d) F g = 1 F e = 0 in the D 2 line of Rb 87 . In (a) and (b), the populations of the Zeeman sublevels are written on the multitripod schemes for the parameters V 1 Γ = 1 , Γ g g Γ = 0.0005 , γ Γ = 0.001 , and N = 10 12   atoms   cm 3 , with B = 0 in (a) and B = 1 G in (b). In (c), the pump is σ + polarized (Λ system), whereas in (d) the pump is σ polarized (tripod system).

Fig. 2
Fig. 2

Probe absorption spectra for F g = 2 F e = 1 transition in the D 2 line of Rb 85 , as a function of pump–probe detuning δ = ω 2 ω 1 for various pump Rabi frequencies, V 1 Γ = 1 (solid curve), V 1 Γ = 2 (dashed curve), and V 1 Γ = 3 (dotted–dashed curve). Other parameters are as in Fig. 1b.

Fig. 3
Fig. 3

Probe absorption spectra for F g = 1 F e = 0 in the D 2 line of Rb 87 . In (a) the pump is σ + polarized, and in (b) and (c) it is σ polarized. Parameters are B = 3 G , Γ g g = 0 , γ Γ = 0.001 , and N = 10 12   atoms   cm 3 , and V 1 Γ = 0.1 in (a) and (b) and V 1 Γ = 65 in (c). In (a), the populations are ρ e e = 0.0003 , ρ g 1 g 1 = 0.135 , and ρ g 2 g 2 = ρ g 3 g 3 = 0.432 ; in (b), they are ρ e e = 0.0005 , ρ g 1 g 1 = ρ g 3 g 3 = 0.243 , and ρ g 2 g 2 = 0.512 ; and in (c), they are ρ e e = 0.0004 , ρ g 1 g 1 = ρ g 3 g 3 = 0.268 , and ρ g 2 g 2 = 0.463 .

Fig. 4
Fig. 4

Probe absorption spectra for F g = 2 F e = 1 transition in D 2 line of (a) Rb 85 (cycling transition) and (b) Rb 87 (noncycling transition). In (a), the spectra are calculated with (solid curve) and without (dashed curve) TOC. V 1 Γ = 2 , and the other parameters are the same as in Fig. 1b.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ e g 2 ( ω 2 ) = V 2 ( ρ g 2 g 2 0 ρ e e 0 ) + V 1 ρ g 1 g 2 ( ω 2 ω 1 ) Δ 2 i γ e g = V 2 ( ρ g 2 g 2 0 ρ e e 0 ) + V 1 V 2 [ ρ g 1 e 0 ( ω 1 ) Δ 1 Δ 2 + i γ g g ] [ Δ 2 i γ e g ] + V 1 2 Δ 1 Δ 2 + i γ g g .

Metrics