Abstract

The influences of the pump wavelength and temperature on the dual-peaked Brillouin property of a piece of a small-core microstructure fiber are investigated using the heterodyne method. The experimental results indicate that the dispersion characteristics of the acoustical modes participating in the Brillouin scattering are formed by the coupling of two acoustical modes with different acoustical field distributions. The influence of the pump wavelength can contribute to the variation of the acoustical mode wave vectors. On the other hand, the influence of the environment temperature can contribute to the shift of acoustical mode dispersion map by the variation of the material mechanical parameters and thermal expansion. The model and experiment results demonstrate that the height ratio of the two Brillouin peaks can be controlled by adjusting the pump wavelength or environment temperature.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  2. L. Zou, X. Bao, and L. Chen, Opt. Lett. 28, 2022 (2003).
    [CrossRef] [PubMed]
  3. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
    [CrossRef]
  4. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).
  5. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  6. R. N. Thurston, J. Acoust. Soc. Am. 64, 1 (1978).
    [CrossRef]

2006 (1)

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

2003 (1)

1996 (1)

1978 (1)

R. N. Thurston, J. Acoust. Soc. Am. 64, 1 (1978).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Atkin, D. M.

Bao, X.

Birks, T. A.

Chen, L.

Dainese, P.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Derickson, D.

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).

Fragnito, H. L.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Joly, N.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Khelif, A.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Knight, J. C.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
[CrossRef] [PubMed]

Laude, V.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Russell, P. St. J.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
[CrossRef] [PubMed]

Thurston, R. N.

R. N. Thurston, J. Acoust. Soc. Am. 64, 1 (1978).
[CrossRef]

Wiederhecker, G. S.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Zou, L.

J. Acoust. Soc. Am. (1)

R. N. Thurston, J. Acoust. Soc. Am. 64, 1 (1978).
[CrossRef]

Nat. Phys. (1)

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Opt. Lett. (2)

Other (2)

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experiment setup of the heterodyne measurement for the spontaneous Brillouin spectrum of the MSF. TL distributed feedback, tunable laser; PC, polarization controller; EDFA, erbium-doped fiber amplifiers; CIR, circulator; MSF, microstructure fiber; ISO, isolator; VOA, variable optical attenuator; PD, photonic detector; ESA, electrical spectrum analyzer.

Fig. 2
Fig. 2

Measured Brillouin property of the MSF under different pump wavelengths at 80 ° C . (a) Spontaneous Brillouin spectrum and its Lorentz fit curves when the pump wavelength is 1532.4 nm . (b) Height ratio of the two spontaneous Brillouin peaks under different pump wavelengths. (c) Difference of the Brillouin frequency shifts of the two peaks; the measured frequency shifts of the two peaks are shown in the inset. Error bars are plotted in (b) and (c) but covered by data symbols in (c).

Fig. 3
Fig. 3

Dispersion characteristics of the acoustical modes participating in the Brillouin scattering at 80 ° C .

Fig. 4
Fig. 4

(a) Frequency shifts and (b) peak height ratio of the two Brillouin peaks versus the environment temperature under the pump wavelength of 1530 nm . The error bars are plotted in (a) and (b) but covered by data symbols in (a).

Tables (1)

Tables Icon

Table 1 Pump Wavelengths and Brillouin Frequency Shifts of Peaks A, B for Equal Peak Height at Different Environment Temperatures

Metrics