Abstract

We used multiple optical wavelengths to study ultrasound-modulated optical tomography (UOT) in tissue phantoms. By using intense acoustic bursts and a CCD camera-based speckle contrast detection technique, we observed variations of the ultrasound-modulated signal at various optical absorptions. The experimental variations were found to be highly correlated with predictions from Monte Carlo simulations. By irradiating the sample at two optical wavelengths, we quantitatively estimated the total concentration and the concentration ratio of double dyes in objects embedded in tissue phantoms. The results suggest that UOT can potentially provide noninvasive functional imaging of the total concentration and oxygen saturation of hemoglobin in biological tissue.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Vanzetta and A. Grinvald, Science 286, 1555 (1999).
    [CrossRef] [PubMed]
  2. C. Menon and D. L. Frake, Cancer Lett. 221, 225 (2005).
    [CrossRef] [PubMed]
  3. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, Opt. Lett. 28, 2016 (2003).
    [CrossRef]
  4. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 21, 803 (2003).
    [CrossRef] [PubMed]
  5. H. F. Zhang, K. Maslov, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 24, 848 (2006).
    [CrossRef] [PubMed]
  6. L.-H. Wang, S. L. Jacques, and X. Zhao, Opt. Lett. 20, 629 (1995).
    [CrossRef] [PubMed]
  7. W. Leutz and G. Maret, Physica B 204, 14 (1995).
    [CrossRef]
  8. L.-H. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
    [CrossRef] [PubMed]
  9. S. Sakadzic and L.-H. V. Wang, Phys. Rev. E 74, 036618 (2006).
    [CrossRef]
  10. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, Opt. Lett. 24, 181 (1999).
    [CrossRef]
  11. S. Sakadzic and L.-H. V. Wang, Opt. Lett. 29, 2770 (2004).
    [CrossRef] [PubMed]
  12. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, Opt. Lett. 29, 2509 (2004).
    [CrossRef] [PubMed]
  13. C. Kim, R. J. Zemp, and L.-H. V. Wang, Opt. Lett. 31, 2423 (2006).
    [CrossRef] [PubMed]
  14. R. J. Zemp, S. Sakadzic, and L.-H. V. Wang, Phys. Rev. E 73, 061920 (2006).
    [CrossRef]
  15. D. Dalecki, Biomed. Eng. (NY) 6, 18.1 (2004).

2006 (4)

H. F. Zhang, K. Maslov, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

S. Sakadzic and L.-H. V. Wang, Phys. Rev. E 74, 036618 (2006).
[CrossRef]

R. J. Zemp, S. Sakadzic, and L.-H. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

C. Kim, R. J. Zemp, and L.-H. V. Wang, Opt. Lett. 31, 2423 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Menon and D. L. Frake, Cancer Lett. 221, 225 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (2)

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, Opt. Lett. 28, 2016 (2003).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

2001 (1)

L.-H. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

1999 (2)

1995 (2)

Blonigen, F.

Boas, D. A.

Boccara, A. C.

Culver, J. P.

Dalecki, D.

D. Dalecki, Biomed. Eng. (NY) 6, 18.1 (2004).

DiMarzio, C. A.

Frake, D. L.

C. Menon and D. L. Frake, Cancer Lett. 221, 225 (2005).
[CrossRef] [PubMed]

Grinvald, A.

I. Vanzetta and A. Grinvald, Science 286, 1555 (1999).
[CrossRef] [PubMed]

Jacques, S. L.

Kim, C.

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Lebec, M.

Leutz, W.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Leveque, S.

Maguluri, G.

Maret, G.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

Menon, C.

C. Menon and D. L. Frake, Cancer Lett. 221, 225 (2005).
[CrossRef] [PubMed]

Murray, T. W.

Nieva, A.

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Roy, R. A.

Saint-Jalmes, H.

Sakadzic, S.

S. Sakadzic and L.-H. V. Wang, Phys. Rev. E 74, 036618 (2006).
[CrossRef]

R. J. Zemp, S. Sakadzic, and L.-H. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

S. Sakadzic and L.-H. V. Wang, Opt. Lett. 29, 2770 (2004).
[CrossRef] [PubMed]

Siegel, A. M.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Stott, J. J.

Sui, L.

Vanzetta, I.

I. Vanzetta and A. Grinvald, Science 286, 1555 (1999).
[CrossRef] [PubMed]

Wang, L.-H.

H. F. Zhang, K. Maslov, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, and X. Zhao, Opt. Lett. 20, 629 (1995).
[CrossRef] [PubMed]

Wang, L.-H. V.

C. Kim, R. J. Zemp, and L.-H. V. Wang, Opt. Lett. 31, 2423 (2006).
[CrossRef] [PubMed]

S. Sakadzic and L.-H. V. Wang, Phys. Rev. E 74, 036618 (2006).
[CrossRef]

R. J. Zemp, S. Sakadzic, and L.-H. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

S. Sakadzic and L.-H. V. Wang, Opt. Lett. 29, 2770 (2004).
[CrossRef] [PubMed]

L.-H. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Zemp, R. J.

R. J. Zemp, S. Sakadzic, and L.-H. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

C. Kim, R. J. Zemp, and L.-H. V. Wang, Opt. Lett. 31, 2423 (2006).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

Zhao, X.

Biomed. Eng. (NY) (1)

D. Dalecki, Biomed. Eng. (NY) 6, 18.1 (2004).

Cancer Lett. (1)

C. Menon and D. L. Frake, Cancer Lett. 221, 225 (2005).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L.-H. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. E (2)

S. Sakadzic and L.-H. V. Wang, Phys. Rev. E 74, 036618 (2006).
[CrossRef]

R. J. Zemp, S. Sakadzic, and L.-H. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

L.-H. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

Physica B (1)

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Science (1)

I. Vanzetta and A. Grinvald, Science 286, 1555 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: L, laser; CCD, CCD camera; RF amp, RF amplifier; FG, function generator; PDG, pulse-delay generator; T, ultrasound transducer; S, sample; LT, lens tube.

Fig. 2
Fig. 2

Comparison of simulated modulation depths and experimentally measured changes in speckle contrast at various values of the optical absorption coefficient.

Fig. 3
Fig. 3

(a) Photograph of the tissue mimicking the phantom, containing seven objects dyed with different ratios of red dye concentration, [ R ] , to the total (red and blue) dye concentrations, [ R ] + [ B ] . (b) One-dimensional images of the phantom at wavelengths of 633 and 657 nm . (c) UOT measurements of the total dye concentration, [ R ] + [ B ] , and (d) fraction of the red dye concentration in the total dye concentration, [ R ] ( [ R ] + [ B ] ) .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ R ] + [ B ] = μ a ( λ 1 ) Δ ε ( λ 2 ) μ a ( λ 2 ) Δ ε ( λ 1 ) ε B ( λ 1 ) ε R ( λ 2 ) ε B ( λ 2 ) ε R ( λ 1 ) ,
[ R ] [ R ] + [ B ] = μ a ( λ 2 ) ε B ( λ 1 ) μ a ( λ 1 ) ε B ( λ 2 ) μ a ( λ 1 ) Δ ε ( λ 2 ) μ a ( λ 2 ) Δ ε ( λ 1 ) ,

Metrics