Abstract

Resonant grating filters are promising components for free-space narrowband filtering. Unfortunately, due to their weak angular tolerance, their performances are strongly deteriorated when they are illuminated with a standard collimated beam. Yet this problem can be overcome by resorting to a complex periodic pattern known as the doubly periodic grating [Lemarchand et al., Opt. Lett. 23, 1149 (1998)] . We report what we believe to be the first experimental fabrication and characterization of a bidimensional doubly periodic grating filter. We obtained a 0.5nm bandpass polarization independent reflection filter for telecom wavelengths (1520–1570nm) that presents a transmittivity minimum of 18% with a standard incident collimated beam.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
    [CrossRef]
  2. D. W. Peters, S. A. Kemme, and G. R. Hadley, J. Opt. Soc. Am. A 21, 981 (2004).
    [CrossRef]
  3. G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, Appl. Opt. 43, 1683 (2004).
    [CrossRef] [PubMed]
  4. J. M. Bendickson, E. N. Glytsis, T. G. Gaylord, and D. L. Brundett, J. Opt. Soc. Am. A 18, 1912 (2001).
    [CrossRef]
  5. D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 18, 2109 (2001).
    [CrossRef]
  6. F. Lemarchand, A. Sentenac, and H. Giovannini, Opt. Lett. 23, 1149 (1998).
    [CrossRef]
  7. A. Mizutani, H. Kikuta, and K. Iwata, Opt. Rev. 10, 13 (2003).
    [CrossRef]
  8. A. Sentenac and A.-L. Fehrembach, J. Opt. Soc. Am. A 22, 475 (2005).
    [CrossRef]
  9. P. C. Chaumet, J. Opt. Soc. Am. A 23, 3197 (2005).
    [CrossRef]
  10. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).
    [CrossRef]
  11. E. Popov, L. Mashev, and D. Maystre, Opt. Acta 33, 607 (1986).
    [CrossRef]
  12. A.-L. Fehrembach, D. Maystre, and A. Sentenac, J. Opt. Soc. Am. A 19, 1136 (2002).
    [CrossRef]
  13. A.-L. Fehrembach and A. Sentenac, J. Opt. Soc. Am. A 20, 481 (2003).
    [CrossRef]
  14. A.-L. Fehrembach and A. Sentenac, Appl. Phys. Lett. 86, 121105 (2005).
    [CrossRef]
  15. W. Barnes, T. Preist, S. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996).
    [CrossRef]

2005 (3)

2004 (2)

2003 (2)

A. Mizutani, H. Kikuta, and K. Iwata, Opt. Rev. 10, 13 (2003).
[CrossRef]

A.-L. Fehrembach and A. Sentenac, J. Opt. Soc. Am. A 20, 481 (2003).
[CrossRef]

2002 (1)

2001 (2)

1998 (1)

1997 (2)

L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

1996 (1)

W. Barnes, T. Preist, S. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996).
[CrossRef]

1986 (1)

E. Popov, L. Mashev, and D. Maystre, Opt. Acta 33, 607 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmittivity spectra for (a) a single groove grating (period 971 nm , groove width 250 nm , height 13 nm , refractive index n a = 1 , n h = 2.07 , n b = 1.47 , and n s = 1.448 , and layer thickness, from top to bottom, 65 , 113 , and 196 nm ). Fourier coefficients: ϵ 1 = 0.76 , ϵ 2 = 0.52 . (b) Doubly periodic grating (period 1047.5 nm , groove widths 241.25 and 281.25 nm , height 382.6 nm , refractive index n a = 1 , n h = 2.07 , n b = 1.47 , and n s = 1.448 , and layers thickness, from top to bottom, 62.5 , 263.5 , and 79.1 nm ). Fourier coefficients: ϵ 1 = 0.09 , ϵ 2 = 1.04 .

Fig. 2
Fig. 2

Description of the manufactured component. (a) Top: four layers stack of Ta 2 O 5 and SiO 2 on a glass substrate (refractive index n a = 1 , n h = 2.093 , n l = 1.47 , and n s = 1.443 , and layer thickness from top to bottom 220 , 109 , 63 , and 126 nm , first is engraved). Bottom: periodic pattern (period d = 960 nm ) of four air holes A, B, C, A (diameters d a = 280 nm , d b = 372.5 nm , d c = 185 nm , and d a = d a ). Fourier coefficients: ϵ 1 = 0.07 and ϵ 2 = 0.17 . (b) Scanning electron microscopy image of the manufactured component.

Fig. 3
Fig. 3

(a) Transmittivity spectra for the component of Fig. 2: experimentally (squares and stars, λ r e s = 1.53286 μ m ) and theoretically (dots and solid curve, λ r e s = 1.55181 μ m). (b) Transmittivity with respect to the angle of incidence: experimentally for an intermediate polarization (circles) and theoretically (squares and stars). Gaussian beam 1 / e 2 diameter = 580 μ m .

Fig. 4
Fig. 4

Transmittivity with respect to the angle and wavelength of incidence for the component of Fig. 2. (a) Theoretically (polarization median between s and p) and (b) experimentally (intermediate polarization).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 π λ sin θ x ̂ ± K = k g ,

Metrics