Abstract

We demonstrate subcentimeter depth profiling at a stand off distance of 330m using a time-of-flight approach based on time-correlated single-photon counting. For the first time to our knowledge, the photon-counting time-of-flight technique was demonstrated at a wavelength of 1550nm using a superconducting nanowire single-photon detector. The performance achieved suggests that a system using superconducting detectors has the potential for low-light-level and eye-safe operation. The system’s instrumental response was 70ps full width at half-maximum, which meant that 1cm surface-to-surface resolution could be achieved by locating the centroids of each return signal. A depth resolution of 4mm was achieved by employing an optimized signal-processing algorithm based on a reversible jump Markov chain Monte Carlo method.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M.-C. Amann, T. Bosch, R. Myllyla, and M. Rioux, Opt. Eng. 40, 1019 (2001).
    [CrossRef]
  2. C. J. Karlsson, F. Å. A. Olsson, D. Letalick, and M. Harris, Appl. Opt. 39, 3716 (2000).
    [CrossRef]
  3. W. C. Swann and N. R. Newbury, Opt. Lett. 31 (2006).
    [PubMed]
  4. W. Becker, in Advanced Time-Correlated Single Photon Counting Techniques, Vol. 81 of Springer Series in Chemical Physics (Springer, 2005).
    [CrossRef]
  5. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, Opt. Lett. 22, 543 (1997).
    [CrossRef] [PubMed]
  6. A. M. Wallace, G. S. Buller, and A. C. Walker, Comput. Control Eng. J. 12, 157 (2001).
    [CrossRef]
  7. G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, K. D. Ridley, J. G. Rarity, and R. A. Lamb, Rev. Sci. Instrum. 76, 083112 (2005).
    [CrossRef]
  8. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O'Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, Appl. Opt. 41, 7671 (2002).
    [CrossRef]
  9. C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, R. Scarlett, R. C. Smith, J. Thieler, and S. K. Wilson, Appl. Opt. 38, 1833 (1999).
    [CrossRef]
  10. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, S. Cova, R. A. Lamb, and G. S. Buller, Opt. Express 15, 423 (2007).
    [CrossRef] [PubMed]
  11. S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, IEEE J. Quantum Electron. 42, 397 (2006).
    [CrossRef]
  12. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, Appl. Phys. Lett. 89, 031109 (2006).
    [CrossRef]
  13. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Gkhunev, G. Chulkova, A. Korneev, K. Simrov, G. N. Gol'tsman, and A. Semenov, Appl. Phys. Lett. 80, 705 (2002).
    [CrossRef]
  14. R. H. Hadfield, M. J. Steven, S. G. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, Opt. Express 13, 10846 (2005).
    [CrossRef] [PubMed]
  15. S. Richardson and P. J. Green, J. R. Stat. Soc. Ser. B 59, 731 (1997).
    [CrossRef]
  16. S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, in IAPR Conference on Machine Vision Applications (Springer-Verlag, 2005).

2007 (1)

2006 (3)

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, IEEE J. Quantum Electron. 42, 397 (2006).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

W. C. Swann and N. R. Newbury, Opt. Lett. 31 (2006).
[PubMed]

2005 (2)

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, K. D. Ridley, J. G. Rarity, and R. A. Lamb, Rev. Sci. Instrum. 76, 083112 (2005).
[CrossRef]

R. H. Hadfield, M. J. Steven, S. G. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, Opt. Express 13, 10846 (2005).
[CrossRef] [PubMed]

2002 (2)

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O'Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, Appl. Opt. 41, 7671 (2002).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Gkhunev, G. Chulkova, A. Korneev, K. Simrov, G. N. Gol'tsman, and A. Semenov, Appl. Phys. Lett. 80, 705 (2002).
[CrossRef]

2001 (2)

M.-C. Amann, T. Bosch, R. Myllyla, and M. Rioux, Opt. Eng. 40, 1019 (2001).
[CrossRef]

A. M. Wallace, G. S. Buller, and A. C. Walker, Comput. Control Eng. J. 12, 157 (2001).
[CrossRef]

2000 (1)

1999 (1)

1997 (2)

Appl. Opt. (3)

Appl. Phys. Lett. (2)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Gkhunev, G. Chulkova, A. Korneev, K. Simrov, G. N. Gol'tsman, and A. Semenov, Appl. Phys. Lett. 80, 705 (2002).
[CrossRef]

Comput. Control Eng. J. (1)

A. M. Wallace, G. S. Buller, and A. C. Walker, Comput. Control Eng. J. 12, 157 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, IEEE J. Quantum Electron. 42, 397 (2006).
[CrossRef]

J. R. Stat. Soc. Ser. B (1)

S. Richardson and P. J. Green, J. R. Stat. Soc. Ser. B 59, 731 (1997).
[CrossRef]

Opt. Eng. (1)

M.-C. Amann, T. Bosch, R. Myllyla, and M. Rioux, Opt. Eng. 40, 1019 (2001).
[CrossRef]

Opt. Express (2)

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, S. Cova, R. A. Lamb, and G. S. Buller, Opt. Express 15, 423 (2007).
[CrossRef] [PubMed]

R. H. Hadfield, M. J. Steven, S. G. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, Opt. Express 13, 10846 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, K. D. Ridley, J. G. Rarity, and R. A. Lamb, Rev. Sci. Instrum. 76, 083112 (2005).
[CrossRef]

Other (2)

W. Becker, in Advanced Time-Correlated Single Photon Counting Techniques, Vol. 81 of Springer Series in Chemical Physics (Springer, 2005).
[CrossRef]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, in IAPR Conference on Machine Vision Applications (Springer-Verlag, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

System schematic (BPF=bandpass filter, MMF=multimode fiber, SMF=single-mode fiber). The pulse pattern generator provides the synchronization signal for the laser and provides a (delayed) electrical trigger signal to stop the timing sequence. A photon event returned from the target starts the timing sequence, and the time difference between start and stop is recorded on a PC-based data acquisition card. Examples of distributions of these time differences are shown in the histogram in Fig. 2.

Fig. 2
Fig. 2

Three separate examples of the time responses of the system where the target consisted of two corner-cube retroreflectors separated by (a) 50, (b) 15, and (c) 10 mm . The acquisition time was 30 s in each case. The heights of each trace are slightly different due to variations in optical alignment among the three measurements.

Fig. 3
Fig. 3

Calculated separation versus surface separation. An acquisition time of 30 s was required for each data point; photon returns were recorded at a rate of 1000 s . The black line represents the case of perfect agreement.

Metrics