Abstract

We predict that the interface of materials with defocusing thermal nonlinearities supports stable fundamental and higher-order surface waves when the opposite edges of the medium are maintained at different temperatures. Such surface waves exist due to the interplay between repulsion from the interface and the defocusing thermal nonlinearity that deflects light beams from the bulk of the medium toward its edges.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. Krolikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, J. Opt. B 6, S288 (2004).
    [CrossRef]
  2. M. Peccianti, C. Conti, and G. Assanto, Opt. Lett. 30, 415 (2005).
    [CrossRef] [PubMed]
  3. M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, Opt. Lett. 27, 1460 (2002).
    [CrossRef]
  4. X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, Opt. Commun. 233, 211 (2004).
    [CrossRef]
  5. Z. Xu, Y. V. Kartashov, and L. Torner, Opt. Lett. 30, 3171 (2005).
    [CrossRef] [PubMed]
  6. N. I. Nikolov, D. Neshev, W. Krolikowski, O. Bang, J. J. Rasmussen, and P. L. Christiansen, Opt. Lett. 29, 286 (2004).
    [CrossRef] [PubMed]
  7. A. Dreischuh, D. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, Phys. Rev. Lett. 96, 043901 (2006).
    [CrossRef] [PubMed]
  8. Y. V. Kartashov and L. Torner, Opt. Lett. 32, 946 (2007).
    [CrossRef] [PubMed]
  9. A. M. Deykoon and G. A. Swartzlander, Jr., J. Opt. Soc. Am. B 18, 804 (2001).
    [CrossRef]
  10. C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, Phys. Rev. Lett. 95, 213904 (2005).
    [CrossRef] [PubMed]
  11. C. Rotschild, M. Segev, Z. Xu, Y. V. Kartashov, L. Torner, and O. Cohen, Opt. Lett. 31, 3312 (2006).
    [CrossRef] [PubMed]
  12. C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, Nat. Phys. 2, 769 (2006).
    [CrossRef]
  13. B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, Opt. Lett. 32, 154 (2007).
    [CrossRef]
  14. A. Minovich, D. N. Neshev, A. Dreischuh, W. Krolikowski, and Y. S. Kivshar, Opt. Lett. 32, 1599 (2007).
    [CrossRef] [PubMed]
  15. P. Brochard, V. Grolier-Mazza, and R. Cabanel, J. Opt. Soc. Am. B 14, 405 (1997).
    [CrossRef]
  16. A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, Opt. Lett. 31, 790 (2006).
    [CrossRef] [PubMed]
  17. H.E.Ponath and G.I.Stegeman, eds., Nonlinear Surface Electromagnetic Phenomena (North Holland, 1991).
  18. D. Mihalache, M. Bertolotti, and C. Sibilia, Prog. Opt. 27, 229 (1989).
  19. P. Varatharajah, A. Aceves, J. V. Moloney, D. R. Heatley, and E. M. Wright, Opt. Lett. 13, 690 (1988).
    [CrossRef] [PubMed]
  20. D. R. Andersen, Phys. Rev. A 37, 189 (1988).
    [CrossRef] [PubMed]
  21. Y. V. Kartashov, L. Torner, and V. A. Vysloukh, Opt. Lett. 31, 2595 (2006).
    [CrossRef] [PubMed]
  22. B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, Phys. Rev. Lett. 98, 213901 (2007).
    [CrossRef] [PubMed]

2007 (4)

2006 (5)

2005 (3)

2004 (3)

W. Krolikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, J. Opt. B 6, S288 (2004).
[CrossRef]

X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, Opt. Commun. 233, 211 (2004).
[CrossRef]

N. I. Nikolov, D. Neshev, W. Krolikowski, O. Bang, J. J. Rasmussen, and P. L. Christiansen, Opt. Lett. 29, 286 (2004).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

1997 (1)

1989 (1)

D. Mihalache, M. Bertolotti, and C. Sibilia, Prog. Opt. 27, 229 (1989).

1988 (2)

J. Opt. B (1)

W. Krolikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, J. Opt. B 6, S288 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Phys. (1)

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, Nat. Phys. 2, 769 (2006).
[CrossRef]

Opt. Commun. (1)

X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, Opt. Commun. 233, 211 (2004).
[CrossRef]

Opt. Lett. (11)

Phys. Rev. A (1)

D. R. Andersen, Phys. Rev. A 37, 189 (1988).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, Phys. Rev. Lett. 95, 213904 (2005).
[CrossRef] [PubMed]

A. Dreischuh, D. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, Phys. Rev. Lett. 96, 043901 (2006).
[CrossRef] [PubMed]

B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, Phys. Rev. Lett. 98, 213901 (2007).
[CrossRef] [PubMed]

Prog. Opt. (1)

D. Mihalache, M. Bertolotti, and C. Sibilia, Prog. Opt. 27, 229 (1989).

Other (1)

H.E.Ponath and G.I.Stegeman, eds., Nonlinear Surface Electromagnetic Phenomena (North Holland, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dynamics of propagation of a Gaussian beam q ξ = 0 = a exp [ ( η η c ) 2 η w 2 ] launched (a) in the center of thermal medium corresponding to η c = 20 = L 2 and (b) at a distance η c = 6 from the left interface of thermal medium for a = 1 , η w = 2 , and n b = 80 .

Fig. 2
Fig. 2

Profiles of (a) fundamental surface waves at b = 11 (1) and 17 (2), (b) dipole surface waves at b = 13.3 (1) and 16.6 (2), and (c) triple-mode surface waves at b = 13.9 (1) and 17 (2). In panels (a)–(c) refractive index n b = 20 . (d) Nonlinear corrections to refractive index for fundamental surface wave with b = 3 (1), 1.2 (2), and 0.5 (3) at n b = 4 .

Fig. 3
Fig. 3

(a) Energy flow versus b for fundamental surface wave. (b) Cutoff versus n b for fundamental surface wave (curve 0) and dipole surface wave (curve 1).

Fig. 4
Fig. 4

Real part of perturbation growth rate for (a) dipole and (b) triple-mode surface waves at n b = 20 . (c) Domains of stability (shaded) and instability (white) for dipole surface waves.

Fig. 5
Fig. 5

Stable propagation of (a) fundamental surface wave corresponding to b = 11 and (b) dipole surface wave corresponding to b = 13.3 in the presence of broadband input noise with variance σ noise 2 = 0.01 . In all cases n b = 20 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i q ξ = 1 2 2 q η 2 q n , 2 n η 2 = q 2 for 0 η L ,
i q ξ = 1 2 2 q η 2 q n d for η > L and η < 0 .
δ u = 1 2 d 2 v d η 2 n v + b v ,
δ v = 1 2 d 2 u d η 2 + n u + Δ n w b u ,

Metrics