Abstract

We use near-field interference spectroscopy with a broadband femtosecond, white-light probe to study local surface plasmon resonances in flat gold nanoparticles (FGNPs). Depending on nanoparticle dimensions, local near-field extinction spectra exhibit none, one, or two resonances in the range of visible wavelengths (1.62.6eV). The measured spectra can be accurately described in terms of interference between the field emitted by the probe aperture and the field reradiated by driven FGNP surface plasmon oscillations. The measured resonances are in good agreement with those predicted by calculations using discrete dipole approximation. We observe that the amplitudes of these resonances are dependent upon the spatial position of the near-field probe, which indicates the possibility of spatially selective excitation of specific plasmon modes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nie and S. R. Emory, Science 275, 1102 (1997).
    [Crossref] [PubMed]
  2. K. Li, M. I. Stockman, and D. J. Bergman, Phys. Rev. Lett. 91, 227402 (2003).
    [Crossref] [PubMed]
  3. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
    [Crossref]
  4. K. L. Shuford, M. A. Ratner, and G. C. Schatz, J. Chem. Phys. 123, 114713 (2005).
    [Crossref]
  5. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998).
    [Crossref]
  6. J. Prikulis, H. Xu, L. Gunnarsson, M. Käll, and H. Olin, J. Appl. Phys. 92, 6211 (2002).
    [Crossref]
  7. A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686 (2003).
    [Crossref] [PubMed]
  8. A. A. Mikhailovsky, M. A. Petruska, K. Li, M. I. Stockman, and V. I. Klimov, Phys. Rev. B 69, 085401 (2004).
    [Crossref]
  9. K. Imura, T. Nagahara, and H. Okamoto, J. Chem. Phys. 122, 154701 (2005).
    [Crossref] [PubMed]
  10. D. H. Dahanayaka, J. X. Wang, S. Hossain, and L. A. Bumm, J. Am. Chem. Soc. 128, 6052 (2006).
    [Crossref] [PubMed]

2006 (1)

D. H. Dahanayaka, J. X. Wang, S. Hossain, and L. A. Bumm, J. Am. Chem. Soc. 128, 6052 (2006).
[Crossref] [PubMed]

2005 (2)

K. Imura, T. Nagahara, and H. Okamoto, J. Chem. Phys. 122, 154701 (2005).
[Crossref] [PubMed]

K. L. Shuford, M. A. Ratner, and G. C. Schatz, J. Chem. Phys. 123, 114713 (2005).
[Crossref]

2004 (1)

A. A. Mikhailovsky, M. A. Petruska, K. Li, M. I. Stockman, and V. I. Klimov, Phys. Rev. B 69, 085401 (2004).
[Crossref]

2003 (2)

2002 (1)

J. Prikulis, H. Xu, L. Gunnarsson, M. Käll, and H. Olin, J. Appl. Phys. 92, 6211 (2002).
[Crossref]

1998 (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998).
[Crossref]

1997 (2)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
[Crossref]

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[Crossref] [PubMed]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

Bumm, L. A.

D. H. Dahanayaka, J. X. Wang, S. Hossain, and L. A. Bumm, J. Am. Chem. Soc. 128, 6052 (2006).
[Crossref] [PubMed]

Dahanayaka, D. H.

D. H. Dahanayaka, J. X. Wang, S. Hossain, and L. A. Bumm, J. Am. Chem. Soc. 128, 6052 (2006).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[Crossref] [PubMed]

Feldmann, J.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998).
[Crossref]

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
[Crossref]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998).
[Crossref]

Gunnarsson, L.

J. Prikulis, H. Xu, L. Gunnarsson, M. Käll, and H. Olin, J. Appl. Phys. 92, 6211 (2002).
[Crossref]

Hossain, S.

D. H. Dahanayaka, J. X. Wang, S. Hossain, and L. A. Bumm, J. Am. Chem. Soc. 128, 6052 (2006).
[Crossref] [PubMed]

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, J. Chem. Phys. 122, 154701 (2005).
[Crossref] [PubMed]

Käll, M.

J. Prikulis, H. Xu, L. Gunnarsson, M. Käll, and H. Olin, J. Appl. Phys. 92, 6211 (2002).
[Crossref]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998).
[Crossref]

Klimov, V. I.

A. A. Mikhailovsky, M. A. Petruska, K. Li, M. I. Stockman, and V. I. Klimov, Phys. Rev. B 69, 085401 (2004).
[Crossref]

A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686 (2003).
[Crossref] [PubMed]

Li, K.

A. A. Mikhailovsky, M. A. Petruska, K. Li, M. I. Stockman, and V. I. Klimov, Phys. Rev. B 69, 085401 (2004).
[Crossref]

K. Li, M. I. Stockman, and D. J. Bergman, Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

Mikhailovsky, A. A.

A. A. Mikhailovsky, M. A. Petruska, K. Li, M. I. Stockman, and V. I. Klimov, Phys. Rev. B 69, 085401 (2004).
[Crossref]

A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686 (2003).
[Crossref] [PubMed]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, J. Chem. Phys. 122, 154701 (2005).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[Crossref] [PubMed]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, J. Chem. Phys. 122, 154701 (2005).
[Crossref] [PubMed]

Olin, H.

J. Prikulis, H. Xu, L. Gunnarsson, M. Käll, and H. Olin, J. Appl. Phys. 92, 6211 (2002).
[Crossref]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998).
[Crossref]

Petruska, M. A.

A. A. Mikhailovsky, M. A. Petruska, K. Li, M. I. Stockman, and V. I. Klimov, Phys. Rev. B 69, 085401 (2004).
[Crossref]

A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686 (2003).
[Crossref] [PubMed]

Prikulis, J.

J. Prikulis, H. Xu, L. Gunnarsson, M. Käll, and H. Olin, J. Appl. Phys. 92, 6211 (2002).
[Crossref]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
[Crossref]

Ratner, M. A.

K. L. Shuford, M. A. Ratner, and G. C. Schatz, J. Chem. Phys. 123, 114713 (2005).
[Crossref]

Schatz, G. C.

K. L. Shuford, M. A. Ratner, and G. C. Schatz, J. Chem. Phys. 123, 114713 (2005).
[Crossref]

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
[Crossref]

Shuford, K. L.

K. L. Shuford, M. A. Ratner, and G. C. Schatz, J. Chem. Phys. 123, 114713 (2005).
[Crossref]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998).
[Crossref]

Stockman, M. I.

A. A. Mikhailovsky, M. A. Petruska, K. Li, M. I. Stockman, and V. I. Klimov, Phys. Rev. B 69, 085401 (2004).
[Crossref]

A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686 (2003).
[Crossref] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

von Plessen, G.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998).
[Crossref]

Wang, J. X.

D. H. Dahanayaka, J. X. Wang, S. Hossain, and L. A. Bumm, J. Am. Chem. Soc. 128, 6052 (2006).
[Crossref] [PubMed]

Xu, H.

J. Prikulis, H. Xu, L. Gunnarsson, M. Käll, and H. Olin, J. Appl. Phys. 92, 6211 (2002).
[Crossref]

Appl. Phys. Lett. (1)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
[Crossref]

J. Am. Chem. Soc. (1)

D. H. Dahanayaka, J. X. Wang, S. Hossain, and L. A. Bumm, J. Am. Chem. Soc. 128, 6052 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. Prikulis, H. Xu, L. Gunnarsson, M. Käll, and H. Olin, J. Appl. Phys. 92, 6211 (2002).
[Crossref]

J. Chem. Phys. (2)

K. L. Shuford, M. A. Ratner, and G. C. Schatz, J. Chem. Phys. 123, 114713 (2005).
[Crossref]

K. Imura, T. Nagahara, and H. Okamoto, J. Chem. Phys. 122, 154701 (2005).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

A. A. Mikhailovsky, M. A. Petruska, K. Li, M. I. Stockman, and V. I. Klimov, Phys. Rev. B 69, 085401 (2004).
[Crossref]

Phys. Rev. Lett. (2)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998).
[Crossref]

K. Li, M. I. Stockman, and D. J. Bergman, Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

Science (1)

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a, NSOM image of a large FGNP. b, Near-field extinction spectrum (dotted line) measured at the center of the FGNP and calculated extinction spectrum (solid line).

Fig. 2
Fig. 2

a, Topography and b, NSOM images of two small FGNPs. c, Extinction spectrum (dotted line) of the triangular particle imaged in a and b. The solid line is the calculated thin-film response. d, Spectrum after subtracting the thin-film transmission (dotted line) can be approximated by the near-field response of a single SP mode (solid line).

Fig. 3
Fig. 3

a, NSOM images of two FGNPs. b, Two near-field extinction spectra (black and red dotted lines; after subtracting the thin-film response) recorded at the positions 1 and 2 in a. These spectra can be modeled by the optical response of two independent SP modes (solid line). c, Numerical DDA calculations of the extinction spectrum of a truncated triangle (inset) for vertical polarization of the applied field (similar SP response for horizontal polarization).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q ( ω ) = ln ( I T I r e f ) = ln E T + E S P E r e f 2 = ln t ( ω ) E 0 + β t ( ω ) E 0 u S P ( ω ) e i ϕ ( ω ) E r e f 2 = Q T F ( ω ) ln 1 + β u S P ( ω ) e i ϕ ( ω ) 2 .

Metrics