Abstract

We demonstrate broadband light generation by focusing two-color ultrashort laser pulses into a Raman-active crystal, lead tungstate (PbWO4). As many as 20 anti-Stokes and 2 Stokes fields are generated due to strong near-resonant excitation of a Raman transition. The generated spectrum extends from the infrared, through the visible region, to the ultraviolet, and it consists of discrete spatially separated sidebands. Our measurements confirm good mutual spatial and temporal coherence among the generated fields and open possibilities for synthesis of subfemtosecond light waveforms.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. V. Sokolov and S. E. Harris, J. Opt. B: Quantum Semiclassical Opt. 5, R1 (2003).
    [CrossRef]
  2. A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, J. Mod. Opt. 52, 285 (2005).
    [CrossRef]
  3. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature 427, 817 (2004).
    [CrossRef] [PubMed]
  4. H. M. Pask, Prog. Quantum Electron. 27, 3 (2003).
    [CrossRef]
  5. A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, Phys. Rev. Lett. 83, 2560 (1999).
    [CrossRef]
  6. E. Sali, K. J. Mendham, J. W. G. Tisch, T. Halfmann, and J. P. Marangos, Opt. Lett. 29, 495 (2005).
    [CrossRef]
  7. J. Takahashi, Y. Kawabe, and E. Hanamura, Opt. Express 12, 1185 (2004).
    [CrossRef] [PubMed]
  8. E. Matsubabra, K. Inoue, and E. Hanamura, J. Phys. Soc. Jpn. 75, 024712 (2006).
    [CrossRef]
  9. H. Matsuki, K. Inoue, and E. Hanamura, Phys. Rev. B 75, 024102 (2007).
    [CrossRef]
  10. A. S. Grabtchikov, R. V. Chulkov, V. A. Orlovich, M. Schmitt, R. Maksimenko, and W. Kiefer, Opt. Lett. 28, 926 (2003).
    [CrossRef] [PubMed]
  11. A. A. Kaminskii, H. J. Eichler, K.-i. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. Garca-Sole, J. Fernandez, and R. Balda, Appl. Opt. 38, 4533 (1999).
    [CrossRef]
  12. A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, Opt. Commun. 183, 277 (2000).
    [CrossRef]

2007

H. Matsuki, K. Inoue, and E. Hanamura, Phys. Rev. B 75, 024102 (2007).
[CrossRef]

2006

E. Matsubabra, K. Inoue, and E. Hanamura, J. Phys. Soc. Jpn. 75, 024712 (2006).
[CrossRef]

2005

E. Sali, K. J. Mendham, J. W. G. Tisch, T. Halfmann, and J. P. Marangos, Opt. Lett. 29, 495 (2005).
[CrossRef]

A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, J. Mod. Opt. 52, 285 (2005).
[CrossRef]

2004

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature 427, 817 (2004).
[CrossRef] [PubMed]

J. Takahashi, Y. Kawabe, and E. Hanamura, Opt. Express 12, 1185 (2004).
[CrossRef] [PubMed]

2003

A. V. Sokolov and S. E. Harris, J. Opt. B: Quantum Semiclassical Opt. 5, R1 (2003).
[CrossRef]

H. M. Pask, Prog. Quantum Electron. 27, 3 (2003).
[CrossRef]

A. S. Grabtchikov, R. V. Chulkov, V. A. Orlovich, M. Schmitt, R. Maksimenko, and W. Kiefer, Opt. Lett. 28, 926 (2003).
[CrossRef] [PubMed]

2000

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, Opt. Commun. 183, 277 (2000).
[CrossRef]

1999

Appl. Opt.

J. Mod. Opt.

A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, J. Mod. Opt. 52, 285 (2005).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt.

A. V. Sokolov and S. E. Harris, J. Opt. B: Quantum Semiclassical Opt. 5, R1 (2003).
[CrossRef]

J. Phys. Soc. Jpn.

E. Matsubabra, K. Inoue, and E. Hanamura, J. Phys. Soc. Jpn. 75, 024712 (2006).
[CrossRef]

Nature

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature 427, 817 (2004).
[CrossRef] [PubMed]

Opt. Commun.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, Opt. Commun. 183, 277 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

H. Matsuki, K. Inoue, and E. Hanamura, Phys. Rev. B 75, 024102 (2007).
[CrossRef]

Phys. Rev. Lett.

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, Phys. Rev. Lett. 83, 2560 (1999).
[CrossRef]

Prog. Quantum Electron.

H. M. Pask, Prog. Quantum Electron. 27, 3 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Broadband generation in a PbWO 4 crystal with two pulses ( λ 1 = 620 nm and λ 2 = 588 nm ) applied at an angle of 4 ° to each other. Top, generated beams projected onto a white screen. The two pump pulses (bright spots at the left), two S and two AS are attenuated by a neutral-density filter. Bottom, normalized spectra of the generated sidebands (left, AS 1 to AS6; right, AS 12 to AS 16).

Fig. 2
Fig. 2

Peak frequency of the generated sidebands plotted as a function of the output angle. One input frequency (pump 2) is fixed, while the δ ν = ν 2 ν 1 is tuned to 844 (triangles), 1804 (circles), and 2002 cm 1 (squares), respectively. The FWM frequency (measured at the point shown in the inset by the arrow) varies as ν F W M = 2 ν 2 ν 1 , while the Raman sideband frequencies stay approximately fixed. The inset shows the output beams projected onto a screen for these same values of δ ν (varying from 2002 to 844 cm 1 top to bottom).

Fig. 3
Fig. 3

Histograms of AS 5 pulse energy. Solid black bars: the number of pulses (out of 150) versus AS 5 pulse energy generated with red and IR input beams only. White bars: the histogram of AS 5 pulse energy (913 pulses total) with the addition of the third input beam. The dotted curve is a theoretical prediction obtained assuming perfect single-shot coherence of the two interfering fields and random shot-to-shot variation of their relative phase.

Metrics