Abstract

A means of performing simultaneous, high-speed measurements of temperature and OH lifetime-corrected laser-induced fluorescence (LIF) for tracking unsteady flames has been developed and demonstrated. The system uses the frequency-doubled and frequency-tripled output beams of an 80MHz mode-locked Ti:sapphire laser to achieve ultrashort laser pulses (order 2ps) for Rayleigh-scattering thermometry at 460nm and lifetime-corrected OH LIF at 306.5nm, respectively. Simultaneous, high-speed measurements of temperature and OH number density enable studies of flame chemistry, heat release, and flame extinction in unsteady, strained flames where the local fluorescence-quenching environment is unknown.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. R. Katta, T. R. Meyer, J. R. Gord, and W. M. Roquemore, Combust. Flame 132, 639 (2002).
    [CrossRef]
  2. T. N. Anderson, R. P. Lucht, T. R. Meyer, S. Roy, and J. R. Gord, Opt. Lett. 30, 1321 (2005).
    [CrossRef] [PubMed]
  3. C. F. Kaminski, J. Hult, and M. Aldén, Appl. Phys. B 68, 757 (2000).
    [CrossRef]
  4. M. W. Renfro, G. B. King, and N. M. Laurendeau, Appl. Opt. 38, 4596 (1999).
    [CrossRef]
  5. M. W. Renfro, M. S. Klassen, G. B. King, and N. M. Laurendeau, Opt. Lett. 22, 175 (1997).
    [CrossRef] [PubMed]
  6. J. Luque and D. R. Crosley, LIFBASE: Database and Spectral SimulationOHA-X, OD A-X, NO A-X, NO D-X and CH A-X, B-X, C-X, SRI Report MP 96-001 (SRI International, 1996).
  7. V. Bergmann, W. Meier, D. Wolff, and W. Stricker, Appl. Phys. B 66, 489 (1998).
    [CrossRef]
  8. W. Meier, R. S. Barlow, Y.-L. Chen, and J.-Y. Chen, Combust. Flame 123, 326 (2000).
    [CrossRef]

2005 (1)

2002 (1)

V. R. Katta, T. R. Meyer, J. R. Gord, and W. M. Roquemore, Combust. Flame 132, 639 (2002).
[CrossRef]

2000 (2)

W. Meier, R. S. Barlow, Y.-L. Chen, and J.-Y. Chen, Combust. Flame 123, 326 (2000).
[CrossRef]

C. F. Kaminski, J. Hult, and M. Aldén, Appl. Phys. B 68, 757 (2000).
[CrossRef]

1999 (1)

1998 (1)

V. Bergmann, W. Meier, D. Wolff, and W. Stricker, Appl. Phys. B 66, 489 (1998).
[CrossRef]

1997 (1)

Appl. Opt. (1)

Appl. Phys. B (2)

V. Bergmann, W. Meier, D. Wolff, and W. Stricker, Appl. Phys. B 66, 489 (1998).
[CrossRef]

C. F. Kaminski, J. Hult, and M. Aldén, Appl. Phys. B 68, 757 (2000).
[CrossRef]

Combust. Flame (2)

W. Meier, R. S. Barlow, Y.-L. Chen, and J.-Y. Chen, Combust. Flame 123, 326 (2000).
[CrossRef]

V. R. Katta, T. R. Meyer, J. R. Gord, and W. M. Roquemore, Combust. Flame 132, 639 (2002).
[CrossRef]

Opt. Lett. (2)

Other (1)

J. Luque and D. R. Crosley, LIFBASE: Database and Spectral SimulationOHA-X, OD A-X, NO A-X, NO D-X and CH A-X, B-X, C-X, SRI Report MP 96-001 (SRI International, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical layout for simultaneous Rayleigh-scattering and lifetime-corrected OH LIF. Symbols: PMT, photomultiplier tube; H10, 0.1 m monochromator; DFR, double Fresnel rhomb; L1, 1 m lens; L2, 20 cm lens; L3, 20 cm lens; L4, 15 cm lens.

Fig. 2
Fig. 2

Timing diagram for simultaneous detection of Rayleigh scattering and LIF. Channel D1 integrates over entire 12.5 ns period. Channels D2–D4 integrate over 3.5 nm bins to detect Rayleigh scattering and resolve fluorescence lifetime.

Fig. 3
Fig. 3

Rolon vortex/flame burner used to demonstrate simultaneous temperature and lifetime-corrected LIF measurements.

Fig. 4
Fig. 4

Simultaneous measurements of temperature and lifetime-corrected OH LIF during vortex/flame interaction. Passage of flame across probe volume reveals differences in width and peak of each profile.

Fig. 5
Fig. 5

Simultaneous measurements of lifetime-corrected OH LIF with fluorescence lifetime variations of 20 % 25 % across the OH layer.

Metrics