Abstract

A means of performing simultaneous, high-speed measurements of temperature and OH lifetime-corrected laser-induced fluorescence (LIF) for tracking unsteady flames has been developed and demonstrated. The system uses the frequency-doubled and frequency-tripled output beams of an 80MHz mode-locked Ti:sapphire laser to achieve ultrashort laser pulses (order 2ps) for Rayleigh-scattering thermometry at 460nm and lifetime-corrected OH LIF at 306.5nm, respectively. Simultaneous, high-speed measurements of temperature and OH number density enable studies of flame chemistry, heat release, and flame extinction in unsteady, strained flames where the local fluorescence-quenching environment is unknown.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Application of tunable excimer lasers to combustion diagnostics: a review

Erhard W. Rothe and Peter Andresen
Appl. Opt. 36(18) 3971-4033 (1997)

Demonstration of a two-line Kr PLIF thermometry technique for gaseous combustion applications

Dominic Zelenak and Venkateswaran Narayanaswamy
Opt. Lett. 44(2) 367-370 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription