Abstract

A simple method for generating trains of high-contrast femtosecond pulses is proposed and demonstrated: a linearly polarized, frequency-chirped laser pulse is passed through a multiple-order wave plate and a linear polarizer. It is shown theoretically that this arrangement forms a train of laser pulses, and in experiments the production of a train of approximately 100 pulses, each of 200fs duration, is demonstrated. In combination with an acousto-optic programmable dispersive filter this technique could be used to generate and control pulse trains with chirped spacing. Pulse trains of this type have widespread applications in ultrafast optics.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, and O. Cohen, Nat. Phys. 3, 270 (2007).
    [CrossRef]
  2. E. Kruger, J. Opt. Soc. Am. B 12, 15 (1995).
    [CrossRef]
  3. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
    [CrossRef] [PubMed]
  4. D. Umstadter, E. Esarey, and J. Kim, Phys. Rev. Lett. 72, 1224 (1994).
    [CrossRef] [PubMed]
  5. Y. Liu, S. G. Park, and A. M. Weiner, Opt. Lett. 21, 1762 (1996).
    [CrossRef] [PubMed]
  6. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
    [CrossRef]
  7. C. W. Siders, J. L. W. Siders, A. J. Taylor, S. G. Park, and A. M. Weiner, Appl. Opt. 37, 5302 (1998).
    [CrossRef]
  8. B. Dromey, M. Zepf, M. Landreman, K. O'Keefe, T. Robinson, and S. M. Hooker, Appl. Opt. 46, 5142 (2007).
    [CrossRef] [PubMed]
  9. A. E. Siegman, Lasers (University Science, 1986).
  10. F. Verluise, V. Laude, J. P. Huignard, P. Tournois, and A. Migus, J. Opt. Soc. Am. B 17, 138 (2000).
    [CrossRef]

2007 (2)

X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, and O. Cohen, Nat. Phys. 3, 270 (2007).
[CrossRef]

B. Dromey, M. Zepf, M. Landreman, K. O'Keefe, T. Robinson, and S. M. Hooker, Appl. Opt. 46, 5142 (2007).
[CrossRef] [PubMed]

2000 (1)

1998 (1)

1996 (1)

1995 (1)

1994 (1)

D. Umstadter, E. Esarey, and J. Kim, Phys. Rev. Lett. 72, 1224 (1994).
[CrossRef] [PubMed]

1990 (1)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

1988 (1)

Appl. Opt. (2)

J. Opt. Soc. Am. B (3)

Nat. Phys. (1)

X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, and O. Cohen, Nat. Phys. 3, 270 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. Umstadter, E. Esarey, and J. Kim, Phys. Rev. Lett. 72, 1224 (1994).
[CrossRef] [PubMed]

Science (1)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

Other (1)

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement used to generate and measure trains of femtosecond pulses. PD, photodiode.

Fig. 2
Fig. 2

Cross-correlation traces obtained with a stretched pulse of 33 ps FWHM duration and multiple-order calcite wave plates of thickness: (a) 0 mm (no crystal), (b) 0.83 mm , (c) 1.65 mm , (d) 3.30 mm , (e) 6.61 mm , (f) 13.22 mm , (g) 26.43 mm .

Fig. 3
Fig. 3

Plot of 1 Δ τ as a function of the thickness of the multiple-order calcite wave plate for stretched pulses of duration 5, 10, 15, and 33 ps .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( l , t ) = f ( l , t ) exp ( i ω 0 t ) exp [ i ϕ ( l , t ) ] ,
f ( l , t ) = A exp { R [ Γ ( l ) ] ( t β 0 l ) 2 } ,
ϕ ( l , t ) = β 0 l γ ( t β 0 l ) 2 ,
γ = b + 2 β 0 l ( a 2 + b 2 ) ( 1 + 2 β 0 l b ) 2 + ( 2 β 0 l a ) 2 .
E pol 2 f ¯ ( l , t ) exp [ i ϕ ¯ ( l , t ) ] cos [ ϕ o ( l , t ) ϕ e ( l , t ) 2 ] ,
Δ τ = π ( β 0 e γ e β 0 o γ o ) l + ( γ o γ e ) t ,
π b l 1 β 0 e β 0 o ,

Metrics