Abstract

We demonstrate, for the first time to our knowledge, Raman lasing from stationary microdroplets on a superhydrophobic surface. In the experiments, glycerol–water microdroplets with radii in the 1115μm range were pumped at 532nm with a pulsed, frequency-doubled Nd:YAG laser. Two distinct operation regimes of the microdroplets were observed: cavity-enhanced Raman scattering and Raman lasing. In the latter case, the Raman lasing signal was higher than the background by more than 30dB. Investigation of the Raman spectra of various glycerol–water mixtures indicates that lasing occurs within the glycerol Raman band. Raman lasing was not sustained; rather, oscillation would occur in temporally separated bursts. Increasing the rate of convective cooling by nitrogen purging improved the lasing performance and reduced the average interburst separation from 2.3to0.4s.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, Opt. Lett. 9, 499 (1984).
    [CrossRef] [PubMed]
  2. J. B. Snow, S.-X. Qian, and R. K. Chang, Opt. Lett. 10, 37 (1985).
    [CrossRef] [PubMed]
  3. A. S. Kwok, A. Serpengüzel, W.-F. Hsieh, R. K. Chang, and J. B. Gillespie, Opt. Lett. 17, 1435 (1992).
    [CrossRef] [PubMed]
  4. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
    [CrossRef] [PubMed]
  5. K. J. Vahala, Nature 424, 839 (2003).
    [CrossRef] [PubMed]
  6. R. J. Hopkins, R. Symes, R. M. Sayer, and J. P. Reid, Chem. Phys. Lett. 380, 665 (2003).
    [CrossRef]
  7. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, Phys. Chem. Chem. Phys. 6, 4924 (2004).
    [CrossRef]
  8. A. Mazzei, H. Krauter, O. Benson, and S. Gotzinger, Appl. Phys. Lett. 89, 101105 (2006).
    [CrossRef]
  9. M. M. Dimitrescu, M. J. Saarinen, M. D. Guina, and M. V. Pessa, IEEE J. Quantum Electron. 8, 219 (2002).
    [CrossRef]
  10. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, Appl. Phys. Lett. 77, 184 (2000).
    [CrossRef]
  11. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
    [CrossRef] [PubMed]
  12. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, Nat. Photonics 1, 61 (2006).
    [CrossRef]
  13. I. S. Grudunin and L. Maleki, Opt. Lett. 32, 166 (2007).
    [CrossRef]
  14. S. Arnold and L. M. Folan, Rev. Sci. Instrum. 57, 2250 (1986).
    [CrossRef]
  15. A. Kiraz, A. Kurt, M. A. Dundar, and A. L. Demirel, Appl. Phys. Lett. 89, 081118 (2006).
    [CrossRef]

2007 (1)

2006 (3)

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, Nat. Photonics 1, 61 (2006).
[CrossRef]

A. Kiraz, A. Kurt, M. A. Dundar, and A. L. Demirel, Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

A. Mazzei, H. Krauter, O. Benson, and S. Gotzinger, Appl. Phys. Lett. 89, 101105 (2006).
[CrossRef]

2004 (1)

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, Phys. Chem. Chem. Phys. 6, 4924 (2004).
[CrossRef]

2003 (2)

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

R. J. Hopkins, R. Symes, R. M. Sayer, and J. P. Reid, Chem. Phys. Lett. 380, 665 (2003).
[CrossRef]

2002 (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

M. M. Dimitrescu, M. J. Saarinen, M. D. Guina, and M. V. Pessa, IEEE J. Quantum Electron. 8, 219 (2002).
[CrossRef]

2000 (1)

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef] [PubMed]

1992 (1)

1986 (1)

S. Arnold and L. M. Folan, Rev. Sci. Instrum. 57, 2250 (1986).
[CrossRef]

1985 (1)

1984 (1)

Appl. Phys. Lett. (3)

A. Mazzei, H. Krauter, O. Benson, and S. Gotzinger, Appl. Phys. Lett. 89, 101105 (2006).
[CrossRef]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

A. Kiraz, A. Kurt, M. A. Dundar, and A. L. Demirel, Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

R. J. Hopkins, R. Symes, R. M. Sayer, and J. P. Reid, Chem. Phys. Lett. 380, 665 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Dimitrescu, M. J. Saarinen, M. D. Guina, and M. V. Pessa, IEEE J. Quantum Electron. 8, 219 (2002).
[CrossRef]

Nat. Photonics (1)

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, Nat. Photonics 1, 61 (2006).
[CrossRef]

Nature (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Chem. Chem. Phys. (1)

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, Phys. Chem. Chem. Phys. 6, 4924 (2004).
[CrossRef]

Phys. Rev. A (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. Arnold and L. M. Folan, Rev. Sci. Instrum. 57, 2250 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cavity-enhanced Raman scattering spectrum of a 10.9 - μ m -diameter glycerol–water microdroplet. Exposure time is 45 s .

Fig. 2
Fig. 2

(a) Measured spectrum obtained from a 12.4 - μ m -diameter microdroplet, showing Raman lasing. (b) Corresponding spectrum during the nonlasing period. The inset shows the consecutive spectra (exposure time = 1 s ) showing the “on–off” behavior.

Fig. 3
Fig. 3

Normalized Raman spectra of glycerol–water mixtures containing (curve A) 100, and (curve B) 13 vol.% water. Exposure time is 30 s .

Fig. 4
Fig. 4

Recorded time trace of the Raman lasing intensity observed from a 21.5 - μ m -diameter microdroplet. The recording rate is 25   frames s . Images used in calculating the time trace at frames 3348, 3349, and 12,083 are shown at the top. The scale bar shows 5 μ m .

Metrics