Abstract

We demonstrate, for the first time to our knowledge, Raman lasing from stationary microdroplets on a superhydrophobic surface. In the experiments, glycerol–water microdroplets with radii in the 1115μm range were pumped at 532nm with a pulsed, frequency-doubled Nd:YAG laser. Two distinct operation regimes of the microdroplets were observed: cavity-enhanced Raman scattering and Raman lasing. In the latter case, the Raman lasing signal was higher than the background by more than 30dB. Investigation of the Raman spectra of various glycerol–water mixtures indicates that lasing occurs within the glycerol Raman band. Raman lasing was not sustained; rather, oscillation would occur in temporally separated bursts. Increasing the rate of convective cooling by nitrogen purging improved the lasing performance and reduced the average interburst separation from 2.3to0.4s.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription