Abstract

We study the tight-focusing properties of spatially variant vector optical fields with elliptical symmetry of linear polarization. We found the eccentricity of the incident polarized light to be an important parameter providing an additional degree of freedom assisting in controlling the field properties at the focus and allowing matching of the field distribution at the focus to the specific application. Applications of these space-variant polarized beams vary from lithography and optical storage to particle beam trapping and material processing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
    [Crossref]
  2. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref] [PubMed]
  3. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
    [Crossref] [PubMed]
  4. Q. Zhan and J. R. Leger, Opt. Express 10, 324 (2002).
    [PubMed]
  5. B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
    [Crossref]
  6. A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
    [Crossref]
  7. Q. Zhan, Opt. Express 12, 3377 (2004).
    [Crossref] [PubMed]
  8. I. Richter, P. C. Sun, F. Xu, and Y. Fainman, Appl. Opt. 34, 2421 (1995).
    [Crossref] [PubMed]
  9. J. N. Mait, A. Scherer, O. Dial, D. W. Prather, and X. Gao, Opt. Lett. 25, 381 (2000).
    [Crossref]
  10. N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 17, 1541 (1992).
    [Crossref] [PubMed]
  11. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 285 (2002).
    [Crossref]
  12. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, Opt. Lett. 29, 1718 (2004).
    [Crossref] [PubMed]

2004 (2)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

2002 (2)

2000 (4)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[Crossref]

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[Crossref]

J. N. Mait, A. Scherer, O. Dial, D. W. Prather, and X. Gao, Opt. Lett. 25, 381 (2000).
[Crossref]

K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
[Crossref] [PubMed]

1995 (1)

1992 (1)

1959 (1)

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[Crossref]

Ashkin, A.

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[Crossref]

Biener, G.

Bomzon, Z.

Brown, T. G.

Davidson, N.

Dial, O.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[Crossref]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[Crossref]

Fainman, Y.

Friesem, A. A.

Gao, X.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[Crossref]

Hasman, E.

Kleiner, V.

Leger, J. R.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[Crossref]

Levy, U.

Mait, J. N.

Pang, L.

Prather, D. W.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[Crossref]

Richards, B.

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[Crossref]

Richter, I.

Scherer, A.

Sun, P. C.

Tsai, C. H.

Wolf, E.

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[Crossref]

Xu, F.

Youngworth, K. S.

Zhan, Q.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram showing the polarization direction of a beam with polarization vector creating a set of concentric ellipses in space with ϵ = 0.8 .

Fig. 2
Fig. 2

Schematic representation of the geometry of the problem.

Fig. 3
Fig. 3

Total intensity distribution at the focus for a LIPERS illumination field ( ϵ = 0.99 , NA = 0.8 ).

Fig. 4
Fig. 4

Flattop intensity distribution obtained for a LIPERS illumination field ( ϵ = 0.87 , NA = 0.9 ).

Fig. 5
Fig. 5

Cross sections of Fig. 4a: along the x f axis and (b) along the y f axis.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( i ) = E x ( i ) e x + E y ( i ) e y ,
{ E x x ( f ) = i A π 0 θ m 0 2 π E x ( i ) ( θ , ϕ ) l 0 ( θ ) cos 1 2 θ sin θ [ cos θ + ( 1 cos θ ) sin 2 ϕ ] exp [ i k ( z f cos θ + ρ f sin θ cos ( ϕ ϕ f ) ) ] d ϕ d θ E x y ( f ) = i A π 0 θ m 0 2 π E x ( i ) ( θ , ϕ ) l 0 ( θ ) cos 1 2 θ sin θ ( 1 cos θ ) cos ϕ sin ϕ exp [ i k ( z f cos θ + ρ f sin θ cos ( ϕ ϕ f ) ) ] d ϕ d θ E x z ( f ) = i A π 0 θ m 0 2 π E x ( i ) ( θ , ϕ ) l 0 ( θ ) cos 1 2 θ sin 2 θ cos ϕ exp [ i k ( z f cos θ + ρ f sin θ cos ( ϕ ϕ f ) ) ] d ϕ d θ } ,
E ( f ) = E x ( f ) e x + E y ( f ) e y + E z ( f ) e z ,
E ( f ) = E ρ ( f ) e ρ + E ϕ ( f ) e ϕ + E z ( f ) e z .
l 0 ( θ ) = { 1 if sin 1 ( 0.1 ) θ sin 1 ( NA ) 0 otherwise ,

Metrics