Abstract

We present the design, fabrication, and operation of a polarization converter based on angled waveguides in the InPInGaAsP material system. By combining design elements from mode evolution and birefringent devices, the total device length is kept short (less than 50μm) and the insertion efficiency high at 81%±19%, which corresponds to an insertion loss of 1dB. Devices operate broadband, i.e., the polarization conversion exceeds 15dB over a 100nm wavelength range. A polarization rotator with these specifications is a prime candidate for use in an integrated polarization diversity scheme.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. F. Krauss, Phys. World 19(2), 32 (2006).
  2. F. Xia, L. Sekaric, and Y. Vlasov, Nat. Photonics 1, 65-71 (2007).
    [CrossRef]
  3. C. K. Madsen, Opt. Lett. 25, 878 (2000).
    [CrossRef]
  4. L. M. Augustin, J. J. G. M. van der Tol, E.-J. Geluk, and M. K. Smit, presented at the European Conference on Integrated Optics, Copenhagen, Denmark, 25-27 April 2007.
  5. H. El-Refaei and D. Yevick, J. Lightwave Technol. 22, 1352 (2004).
    [CrossRef]
  6. V. P. Tzolov and M. Fontaine, Opt. Commun. 127, 7 (1996).
    [CrossRef]
  7. T. Barwicz, M. R. Watts, Milos A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
    [CrossRef]
  8. M. R. Watts and H. A. Haus, Opt. Lett. 30, 138 (2005).
    [CrossRef] [PubMed]
  9. M. V. Kotlyar, L. Bolla, M. Midrio, L. O'Faolain, and T. F. Krauss, Opt. Express 13, 5040 (2005).
    [CrossRef] [PubMed]
  10. L. O'Faolain, M. V. Kotlyar, N. Tripathi, R. Wilson, and T. F. Krauss, J. Vac. Sci. Technol. B 24, 336 (2006).
    [CrossRef]
  11. M. V. Kotlyar, L. O'Faolain, R. Wilson, and T. F. Krauss, J. Vac. Sci. Technol. B 22, 1788 (2004).
    [CrossRef]

2007 (2)

F. Xia, L. Sekaric, and Y. Vlasov, Nat. Photonics 1, 65-71 (2007).
[CrossRef]

T. Barwicz, M. R. Watts, Milos A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

2006 (2)

L. O'Faolain, M. V. Kotlyar, N. Tripathi, R. Wilson, and T. F. Krauss, J. Vac. Sci. Technol. B 24, 336 (2006).
[CrossRef]

T. F. Krauss, Phys. World 19(2), 32 (2006).

2005 (2)

2004 (2)

M. V. Kotlyar, L. O'Faolain, R. Wilson, and T. F. Krauss, J. Vac. Sci. Technol. B 22, 1788 (2004).
[CrossRef]

H. El-Refaei and D. Yevick, J. Lightwave Technol. 22, 1352 (2004).
[CrossRef]

2000 (1)

1996 (1)

V. P. Tzolov and M. Fontaine, Opt. Commun. 127, 7 (1996).
[CrossRef]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (2)

L. O'Faolain, M. V. Kotlyar, N. Tripathi, R. Wilson, and T. F. Krauss, J. Vac. Sci. Technol. B 24, 336 (2006).
[CrossRef]

M. V. Kotlyar, L. O'Faolain, R. Wilson, and T. F. Krauss, J. Vac. Sci. Technol. B 22, 1788 (2004).
[CrossRef]

Nat. Photonics (2)

F. Xia, L. Sekaric, and Y. Vlasov, Nat. Photonics 1, 65-71 (2007).
[CrossRef]

T. Barwicz, M. R. Watts, Milos A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Opt. Commun. (1)

V. P. Tzolov and M. Fontaine, Opt. Commun. 127, 7 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. World (1)

T. F. Krauss, Phys. World 19(2), 32 (2006).

Other (1)

L. M. Augustin, J. J. G. M. van der Tol, E.-J. Geluk, and M. K. Smit, presented at the European Conference on Integrated Optics, Copenhagen, Denmark, 25-27 April 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the polarization rotator; the shaded region is the InGaAsP waveguide core. (Inset) the mode profiles and the lines of force for the electric field of the fundamental (a) and second (b) mode of the widest waveguide section; (c) and (d) are the same for the narrowest waveguide section.

Fig. 2
Fig. 2

Scanning electron micrographs of the angled waveguide polarization rotators in InP . Top, a top view, showing the input–output tapers and the central birefringent section. Bottom, a cross section of the deeply etched trenches that define the angled waveguide.

Fig. 3
Fig. 3

Measured rotation in the angle of the plane of polarization as a function of the width of the central angled waveguide section for both TE input (closed squares) and TM input (open squares). The solid curve is drawn as a guide to the eye, and the dashed curve indicates the desired rotation angle for polarization conversion operation. (Inset) the measured phase difference between orthogonal components of the electric fields δ for the same devices.

Fig. 4
Fig. 4

Polarization conversion ratio [i.e., P(TE)/P(TM) for TE input (solid curves) and P(TM)/P(TE) for TM input (dashed curve)] for the angled waveguide with a central section width of W = 875 nm as a function of wavelength. The resolution of the measurement was 0.5 nm . The gray and black bars indicate wavelength ranges for which the conversion ratio exceeds 15 and 20 dB , respectively.

Metrics