Abstract

A new type of optical configuration—a solid immersion axicon (SIAX)—is proposed. Similar to a solid immersion lens for Gaussian beams, a SIAX increases the diffraction-limited resolution for propagating Bessel beams by a factor of the refractive index of the media. For incident radial polarization, the scheme generates the smallest focal spot available for nondiffracting beams. The configuration can be implemented with either refractive or diffractive axicons. The scheme may find use in microscopy, imaging, lithography and data storage, and other applications requiring nondiffracting beam characteristic features such as very large focal depth.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. H. McLeod, J. Opt. Soc. Am. 44, 592 (1954).
    [CrossRef]
  2. J. H. McLeod, J. Opt. Soc. Am. 50, 592 (1960).
    [CrossRef]
  3. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [CrossRef]
  4. E. N. Leith, G. Collins, I. Khoo, and T. Wynn, J. Opt. Soc. Am. 70, 141 (1980).
    [CrossRef]
  5. G. Hausler and W. Heckel, Appl. Opt. 27, 5165 (1988).
    [CrossRef] [PubMed]
  6. P. Belanger and M. Rioux, Appl. Opt. 17, 1080 (1978).
    [CrossRef] [PubMed]
  7. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, Opt. Lett. 27, 243 (2002).
    [CrossRef]
  8. I. Golub and R. Tremblay, J. Opt. Soc. Am. B 7, 1264 (1990).
    [CrossRef]
  9. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Opt. Lett. 23, 1 (1998).
    [CrossRef]
  10. T. Wulle and S. Herminghaus, Phys. Rev. Lett. 70, 1401 (1993).
    [CrossRef] [PubMed]
  11. U. T. Schwarz, J. Zeitler, J. Baier, M. Maier, and S. Sogomonian, J. Opt. Soc. Am. B 20, 1750 (2003).
    [CrossRef]
  12. I. Golub, Opt. Lett. 20, 1847 (1995).
    [CrossRef] [PubMed]
  13. I. Golub, Opt. Lett. 31, 1890 (2006).
    [CrossRef] [PubMed]
  14. T. Grosjean, F. I. Baida, and D. Courjon, Appl. Opt. 46, 1994 (2007).
    [CrossRef] [PubMed]
  15. T. Grosjean, D. Courjon, and C. Bainier, Opt. Lett. 32, 976 (2007).
    [CrossRef] [PubMed]
  16. S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
    [CrossRef]
  17. I. Ichimura, S. Hayashi, and G. S. Kino, Appl. Opt. 36, 4339 (1997).
    [CrossRef] [PubMed]
  18. S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, Appl. Phys. Lett. 78, 4071 (2001).
    [CrossRef]
  19. T. Grosjean and D. Courjon, Opt. Commun. 272, 314 (2007).
    [CrossRef]
  20. T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
    [CrossRef] [PubMed]
  21. Z. Jaroszewicz, J. Sochacki, A. Kolodziejczyk, and L. R. Staronski, Opt. Lett. 18, 1893 (1993).
    [CrossRef] [PubMed]
  22. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  23. C. J. R. Sheppard and A. Choudhury, Appl. Opt. 43, 4322 (2004).
    [CrossRef] [PubMed]
  24. L. E. Helseth, Opt. Commun. 191, 161 (2001).
    [CrossRef]
  25. C. Liu and S.-H. Park, Opt. Lett. 29, 1742 (2004).
    [CrossRef] [PubMed]
  26. Y. Li, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, Appl. Opt. 31, 2708 (1992).
    [CrossRef]
  27. K. Cohn, D. Simanovskii, T. Smith, and D. Palanker, Appl. Phys. Lett. 81, 3678 (2002).
    [CrossRef]
  28. R. Brunner, M. Burkhardt, A. Pesch, O. Sandfuchs, M. Ferstl, S. Hohng, and J. O. White, J. Opt. Soc. Am. A 21, 1186 (2004).
    [CrossRef]
  29. A. Vasara, J. Turunen, and A. T. Friberg, J. Opt. Soc. Am. A 6, 1748 (1989).
    [CrossRef] [PubMed]
  30. N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 16, 523 (1991).
    [CrossRef] [PubMed]

2007

2006

2004

2003

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

U. T. Schwarz, J. Zeitler, J. Baier, M. Maier, and S. Sogomonian, J. Opt. Soc. Am. B 20, 1750 (2003).
[CrossRef]

2002

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, Opt. Lett. 27, 243 (2002).
[CrossRef]

K. Cohn, D. Simanovskii, T. Smith, and D. Palanker, Appl. Phys. Lett. 81, 3678 (2002).
[CrossRef]

2001

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, Appl. Phys. Lett. 78, 4071 (2001).
[CrossRef]

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

1998

1997

1995

1993

1992

1991

1990

S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

I. Golub and R. Tremblay, J. Opt. Soc. Am. B 7, 1264 (1990).
[CrossRef]

1989

1988

1987

1980

1978

1960

J. H. McLeod, J. Opt. Soc. Am. 50, 592 (1960).
[CrossRef]

1954

Appl. Opt.

Appl. Phys. Lett.

K. Cohn, D. Simanovskii, T. Smith, and D. Palanker, Appl. Phys. Lett. 81, 3678 (2002).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, Appl. Phys. Lett. 78, 4071 (2001).
[CrossRef]

S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

J. Microsc.

T. Grosjean, D. Courjon, and D. Van Labeke, J. Microsc. 210, 319 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

T. Grosjean and D. Courjon, Opt. Commun. 272, 314 (2007).
[CrossRef]

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

T. Wulle and S. Herminghaus, Phys. Rev. Lett. 70, 1401 (1993).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) A SIL increases the NA of a focused Gaussian beam by a factor n. (b) A SIAX increases the NA of a propagating Bessel beam by a factor n. (c) Ray tracing for a SIAX with NA=0.9 (base angle β = 64.8 ° ) accommodating an incident Bessel beam with convergence angle θ = β .

Fig. 2
Fig. 2

Bessel beams generated by an axicon with an apex facing toward (a) the image and (b) the object while in contact with a medium with refractive index n.

Fig. 3
Fig. 3

Comparison of convergence angles for the schemes shown in Figs. 2a (solid curve, θ 1 ) and 2b (dashed curve, θ 2 ) as a function of the base angle of the axicon for n = 1.45 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

β = θ = arc sin ( n sin α ) α .
θ 1 = arc ( n sin α ) α ,
θ 2 = α arc sin ( sin α n ) .
E r cos θ J 1 ( k r sin θ ) ,
E z sin θ J 0 ( k r sin θ ) ,
D Bessel 0.36 λ NA ,

Metrics