Abstract

We demonstrate a simple and compact scheme to generate ultrawideband (UWB) monocycle pulses utilizing gain saturation of a dark return-to-zero (RZ) signal in a semiconductor optical amplifier (SOA). When optical pulses with a dark RZ format propagate through the SOA, the output power at the rising edge will be overamplified compared with that at other durations due to the gain unsaturation. As a result, the output pulses are monocyclelike. The UWB frequency spectra at different injected currents, different input pulse widths, and different input wavelengths are analyzed. Our experiments show that the monocycle generation has good tolerance to the SOA bias current and the input signal wavelength.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
    [CrossRef]
  2. Q. Wang and J. Yao, Electron. Lett. 42, 1304 (2006).
    [CrossRef]
  3. F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 18, 2062 (2006).
    [CrossRef]
  4. T. Kawanishi, T. Sakamoto, and M. Izutsu, in Microwave Photonics (IEEE, 2004), pp. 48-51.
  5. W. Lin and Y. Chen, IEEE J. Sel. Top. Quantum Electron. 12, 882 (2006).
    [CrossRef]
  6. Q. Wang, F. Zeng, S. Blais, and J. Yao, Opt. Lett. 31, 3083 (2006).
    [CrossRef] [PubMed]
  7. F. Zeng, Q. Wang, and J. Yao, Electron. Lett. 43, 121 (2007).
    [CrossRef]
  8. J. Dong, X. Zhang, J. Xu, P. Shum, and D. Huang, Opt. Lett. 32, 1223 (2007).
    [CrossRef] [PubMed]
  9. G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
    [CrossRef]

2007 (2)

2006 (4)

Q. Wang, F. Zeng, S. Blais, and J. Yao, Opt. Lett. 31, 3083 (2006).
[CrossRef] [PubMed]

Q. Wang and J. Yao, Electron. Lett. 42, 1304 (2006).
[CrossRef]

F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 18, 2062 (2006).
[CrossRef]

W. Lin and Y. Chen, IEEE J. Sel. Top. Quantum Electron. 12, 882 (2006).
[CrossRef]

2003 (1)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Electron. Lett. (2)

Q. Wang and J. Yao, Electron. Lett. 42, 1304 (2006).
[CrossRef]

F. Zeng, Q. Wang, and J. Yao, Electron. Lett. 43, 121 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Lin and Y. Chen, IEEE J. Sel. Top. Quantum Electron. 12, 882 (2006).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 18, 2062 (2006).
[CrossRef]

Opt. Lett. (2)

Other (1)

T. Kawanishi, T. Sakamoto, and M. Izutsu, in Microwave Photonics (IEEE, 2004), pp. 48-51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the proposed monocycle generation: LD, laser diode; MZM, Mach–Zehnder modulator.

Fig. 2
Fig. 2

Measured monocycle pulses and their RF spectra: (a) input dark RZ pulse; (b)–(d) measured monocycle pulses when the bias current is 70, 140, and 210 mA , respectively; (e)–(g) RF spectra when the bias current is 70, 140, and 210 mA , respectively.

Fig. 3
Fig. 3

(a) RF spectrum and (b) measured monocycle pulses when the FWHM of the input dark RZ signal is 100, 50, and 25 ps .

Fig. 4
Fig. 4

Central frequency and 10 dB bandwidth vary with different input wavelengths.

Fig. 5
Fig. 5

(a) Monocycle pulses and (b) RF spectra with and without a filter.

Metrics