Abstract

A high-contrast preamplifier based on optical-parametric amplification with a short pump pulse is demonstrated. A gain larger than 105 and measurement-limited contrast higher than 1011 are obtained over a large temporal range extending within less than 10ps of the peak of the pulse, because of the high instantaneous parametric gain provided by a short pump pulse in a nonlinear crystal. The energy gain and high contrast of this preamplifier make it a good seed source for high-power laser systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Umstadter, Phys. Plasmas 8, 1774 (2001).
    [CrossRef]
  2. J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, Fusion Sci. Technol. 49, 453 (2006).
  3. M. Nantel, J. Itatani, A.-C. Tien, J. Faure, D. Kaplan, M. Bouvier, T. Buma, P. Van Rompay, J. A. Nees, P. P. Pronko, D. Umstadter, and G. A. Mourou, IEEE J. Sel. Top. Quantum Electron. 4, 449 (1998).
    [CrossRef]
  4. H. Yoshida, E. Ishii, R. Kodama, H. Fujita, Y. Kitagawa, Y. Izawa, and T. Yamanaka, Opt. Lett. 28, 257 (2003).
    [CrossRef] [PubMed]
  5. V. Bagnoud, J. D. Zuegel, N. Forget, and C. Le Blanc, Opt. Express 15, 5504 (2007).
    [CrossRef] [PubMed]
  6. A. Braun, J. V. Rudd, H. Cheng, G. Mourou, D. Kopf, I. D. Jung, K. J. Weingarten, and U. Keller, Opt. Lett. 20, 1889 (1995).
    [CrossRef] [PubMed]
  7. N. Forget, A. Cotel, E. Brambrink, P. Audebert, C. Le Blanc, A. Jullien, O. Albert, and G. Chériaux, Opt. Lett. 30, 2921 (2005).
    [CrossRef] [PubMed]
  8. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sander, Opt. Lett. 30, 923 (2005).
    [CrossRef] [PubMed]
  9. A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, Appl. Phys. B 84, 409 (2006).
    [CrossRef]
  10. F. Tavella, K. Schmid, N. Ishii, A. Marcinkevicius, L. Veisz, and F. Krausz, Appl. Phys. B 81, 753 (2005).
    [CrossRef]
  11. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, Opt. Commun. 144, 125 (1997).
    [CrossRef]
  12. N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, Opt. Lett. 30, 567 (2005).
    [CrossRef] [PubMed]
  13. L. J. Qian, X. Liu, and F. Wise, Opt. Lett. 24, 166 (1999).
    [CrossRef]

2007

2006

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, Fusion Sci. Technol. 49, 453 (2006).

A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, Appl. Phys. B 84, 409 (2006).
[CrossRef]

2005

2003

2001

D. Umstadter, Phys. Plasmas 8, 1774 (2001).
[CrossRef]

1999

1998

M. Nantel, J. Itatani, A.-C. Tien, J. Faure, D. Kaplan, M. Bouvier, T. Buma, P. Van Rompay, J. A. Nees, P. P. Pronko, D. Umstadter, and G. A. Mourou, IEEE J. Sel. Top. Quantum Electron. 4, 449 (1998).
[CrossRef]

1997

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, Opt. Commun. 144, 125 (1997).
[CrossRef]

1995

Appl. Phys. B

A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, Appl. Phys. B 84, 409 (2006).
[CrossRef]

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevicius, L. Veisz, and F. Krausz, Appl. Phys. B 81, 753 (2005).
[CrossRef]

Fusion Sci. Technol.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, Fusion Sci. Technol. 49, 453 (2006).

IEEE J. Sel. Top. Quantum Electron.

M. Nantel, J. Itatani, A.-C. Tien, J. Faure, D. Kaplan, M. Bouvier, T. Buma, P. Van Rompay, J. A. Nees, P. P. Pronko, D. Umstadter, and G. A. Mourou, IEEE J. Sel. Top. Quantum Electron. 4, 449 (1998).
[CrossRef]

Opt. Commun.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, Opt. Commun. 144, 125 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Plasmas

D. Umstadter, Phys. Plasmas 8, 1774 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the OPA based on a 38 MHz mode-locked oscillator providing the OPA pump at 526.5 nm and signal at 1053 nm .

Fig. 2
Fig. 2

Energy of the signal (continuous curve) and energy of the fluorescence measured in the absence of seed in the OPA (dashed curve). The grayed region represents an interval of two standard deviations on the energy of the signal measured over 100 shots.

Fig. 3
Fig. 3

Bandwidth of the signal defined as the FWHM of the spectrum (solid curve). FWHM of the measured autocorrelation (long dashed curve), and FWHM of the autocorrelation calculated with the FWHM of the measured spectrum (short dashed curve).

Fig. 4
Fig. 4

Autocorrelation of the parametric fluorescence of the unseeded OPA for a 2 mJ pump on a linear (left) and logarithmic scale (right). The experimental data are plotted with a solid curve and the Gaussian fit is plotted with round markers.

Fig. 5
Fig. 5

Third-order cross-correlation of the amplified signal on a logarithmic scale.

Fig. 6
Fig. 6

Detail of the third-order cross-correlation plotted in Fig. 5, where the pump is delayed from the signal by approximately 1 ps (solid curve) and of the third cross-correlation measured when the pump is advanced by approximately 2 ps (dashed curve). The grayed region corresponds to the fluorescence calculated with a Gaussian intensity with a FWHM of 2 ps for comparison to the solid curve data.

Metrics