Abstract

We introduce a way to estimate the fluctuation of the refractive index during thin film deposition, through an optical monitor. The thicknesses and error-compensated thickness for each layer are analyzed. A novel monitoring method is thereby derived. The revised refractive index and the choice of highly sensitive monitoring wavelengths help us predict the termination points more accurately. The performance of a narrow-bandpass filter monitored by this method is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. Vidal, A. Fornier, and E. Pelletier, Appl. Opt. 18, 3851 (1979).
    [PubMed]
  2. H. A. Macleod, Appl. Opt. 20, 82 (1981).
    [CrossRef] [PubMed]
  3. C. J. van der Laan, Appl. Opt. 25, 753 (1986).
    [CrossRef] [PubMed]
  4. H. A. Macleod, Opt. Acta 19, 1 (1972).
    [CrossRef]
  5. C. C. Lee, K. Wu, C. C. Kuo, and S. H. Chen, Opt. Express 13, 4854 (2004).
    [CrossRef]
  6. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
    [CrossRef]
  7. C. C. Lee, Thin Film Optics and Coating Technology, 5th ed. (Yi Hsien, 2006).

2004

1986

1981

1979

1972

H. A. Macleod, Opt. Acta 19, 1 (1972).
[CrossRef]

Appl. Opt.

Opt. Acta

H. A. Macleod, Opt. Acta 19, 1 (1972).
[CrossRef]

Opt. Express

Other

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

C. C. Lee, Thin Film Optics and Coating Technology, 5th ed. (Yi Hsien, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Dispersion relation for a dielectric material.

Fig. 2
Fig. 2

Spectrum of NBFs monitored by three methods.

Tables (1)

Tables Icon

Table 1 Transmittance Peak Position and FWHM for Filters (nm)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Y = { ( 1 + 1 T ) ( 1 1 T ) ( valley ) ( 1 1 T ) ( 1 + 1 T ) ( peak ) } ,
[ B C ] = [ cos δ i sin δ n in sin δ cos δ ] [ 1 α + i β ] ,
sin δ ( Y α n n ) β cos δ = 0 ,
cos δ ( α Y ) + Y β n sin δ = 0 .
n = ± ( α Y ) Y ( α 2 Y α β 2 ) ( α Y ) .
T = 4 α [ ( 1 + α ) cos δ β n sin δ ] 2 + [ ( α n + n ) sin δ + β cos δ ] 2 ,
δ c = tan 1 [ 1 2 β R n R ( n R 2 β R 2 α R 2 ± n R 4 + 2 β R 2 n R 2 2 n R 2 α R 2 + β R 4 + 2 β R 2 α R 2 + α R 4 1 2 ) ] ,

Metrics