Abstract

We introduce a way to estimate the fluctuation of the refractive index during thin film deposition, through an optical monitor. The thicknesses and error-compensated thickness for each layer are analyzed. A novel monitoring method is thereby derived. The revised refractive index and the choice of highly sensitive monitoring wavelengths help us predict the termination points more accurately. The performance of a narrow-bandpass filter monitored by this method is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Vidal, A. Fornier, and E. Pelletier, Appl. Opt. 18, 3851 (1979).
    [PubMed]
  2. H. A. Macleod, Appl. Opt. 20, 82 (1981).
    [Crossref] [PubMed]
  3. C. J. van der Laan, Appl. Opt. 25, 753 (1986).
    [Crossref] [PubMed]
  4. H. A. Macleod, Opt. Acta 19, 1 (1972).
    [Crossref]
  5. C. C. Lee, K. Wu, C. C. Kuo, and S. H. Chen, Opt. Express 13, 4854 (2004).
    [Crossref]
  6. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
    [Crossref]
  7. C. C. Lee, Thin Film Optics and Coating Technology, 5th ed. (Yi Hsien, 2006).

2006 (1)

C. C. Lee, Thin Film Optics and Coating Technology, 5th ed. (Yi Hsien, 2006).

2004 (1)

2001 (1)

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[Crossref]

1986 (1)

1981 (1)

1979 (1)

1972 (1)

H. A. Macleod, Opt. Acta 19, 1 (1972).
[Crossref]

Appl. Opt. (3)

Opt. Acta (1)

H. A. Macleod, Opt. Acta 19, 1 (1972).
[Crossref]

Opt. Express (1)

Other (2)

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[Crossref]

C. C. Lee, Thin Film Optics and Coating Technology, 5th ed. (Yi Hsien, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Dispersion relation for a dielectric material.

Fig. 2
Fig. 2

Spectrum of NBFs monitored by three methods.

Tables (1)

Tables Icon

Table 1 Transmittance Peak Position and FWHM for Filters (nm)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Y = { ( 1 + 1 T ) ( 1 1 T ) ( valley ) ( 1 1 T ) ( 1 + 1 T ) ( peak ) } ,
[ B C ] = [ cos δ i sin δ n in sin δ cos δ ] [ 1 α + i β ] ,
sin δ ( Y α n n ) β cos δ = 0 ,
cos δ ( α Y ) + Y β n sin δ = 0 .
n = ± ( α Y ) Y ( α 2 Y α β 2 ) ( α Y ) .
T = 4 α [ ( 1 + α ) cos δ β n sin δ ] 2 + [ ( α n + n ) sin δ + β cos δ ] 2 ,
δ c = tan 1 [ 1 2 β R n R ( n R 2 β R 2 α R 2 ± n R 4 + 2 β R 2 n R 2 2 n R 2 α R 2 + β R 4 + 2 β R 2 α R 2 + α R 4 1 2 ) ] ,

Metrics