Abstract

We present the single-mode single-polarization regime of a circular-hole holey fiber consisting of a core with large elliptical holes. The elliptical holes in the core, which produce large anisotropies, split the fundamental mode into two orthogonally polarized fundamental modes, often referred to as slow and fast modes. This fiber can guide only one polarization state of the fundamental mode when a fundamental space-filling mode index of the cladding region is designed to lie between these indices of the slow and fast modes of the core region. We demonstrate one design example of this fiber and show that the single-polarization regime can be achieved over a wide wavelength range.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  2. M. Gander, R. McBirde, J. Jones, D. Mogilevtsev, T. Birks, J. Knight, and P. Russell, Electron. Lett. 35, 63 (1999).
    [CrossRef]
  3. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
    [CrossRef]
  4. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, Electron. Lett. 34, 1347 (1998).
    [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 796 (2000).
    [CrossRef]
  6. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, Opt. Lett. 26, 1233 (2001).
    [CrossRef]
  7. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  8. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, Opt. Express 9, 676 (2001).
    [CrossRef] [PubMed]
  9. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, IEEE Photon. Technol. Lett. 13, 588 (2001).
    [CrossRef]
  10. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, Opt. Lett. 26, 488 (2001).
    [CrossRef]
  11. M. J. Steel and R. M. Osgood, Jr., Opt. Lett. 26, 229 (2001).
    [CrossRef]
  12. M. J. Steel and R. M. Osgood, Jr., J. Lightwave Technol. 19, 495 (2001).
    [CrossRef]
  13. W. Belardi, G. Bouwmans, L. Provino, and M. Douay, IEEE J. Quantum Electron. 41, 1558 (2005).
    [CrossRef]
  14. D. Chen and L. Shen, IEEE Photon. Technol. Lett. 19, 185 (2007).
    [CrossRef]
  15. M. Eguchi and Y. Tsuji, J. Opt. Soc. Am. B 24, 750 (2007).
    [CrossRef]
  16. Z. Zhu and T. G. Brown, Opt. Express 10, 853 (2002).
    [PubMed]
  17. I. H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965).
    [CrossRef]

2007

D. Chen and L. Shen, IEEE Photon. Technol. Lett. 19, 185 (2007).
[CrossRef]

M. Eguchi and Y. Tsuji, J. Opt. Soc. Am. B 24, 750 (2007).
[CrossRef]

2005

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, IEEE J. Quantum Electron. 41, 1558 (2005).
[CrossRef]

2002

2001

2000

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 796 (2000).
[CrossRef]

1999

M. Gander, R. McBirde, J. Jones, D. Mogilevtsev, T. Birks, J. Knight, and P. Russell, Electron. Lett. 35, 63 (1999).
[CrossRef]

1998

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

1997

1996

1965

Electron. Lett.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

M. Gander, R. McBirde, J. Jones, D. Mogilevtsev, T. Birks, J. Knight, and P. Russell, Electron. Lett. 35, 63 (1999).
[CrossRef]

IEEE J. Quantum Electron.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, IEEE J. Quantum Electron. 41, 1558 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Chen and L. Shen, IEEE Photon. Technol. Lett. 19, 185 (2007).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, IEEE Photon. Technol. Lett. 13, 588 (2001).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Circular-hole HF having a core consisting of elliptical holes.

Fig. 2
Fig. 2

Effective index n eff of the FSMs for circular- (solid curves) and elliptical-hole (dashed curves) lattices against the normalized frequency Λ λ . FSM e y and FSM e x correspond to the slow and fast FSMs of elliptical-hole lattice, respectively.

Fig. 3
Fig. 3

Permissible range of circular hole sizes satisfying only one polarization state against the normalized frequency. The dashed–dotted curve indicates the normalized cutoff frequency of EC-CHF.

Fig. 4
Fig. 4

Intensity distributions of the slow mode for an EC-CHF with ξ = 0.63 at (a) Λ λ = 4.6 and (b) Λ λ = 0.8 .

Fig. 5
Fig. 5

Dispersion properties of the single-polarization fundamental mode (thick curve), the FSM (thin curve) for the cladding region, and the two polarized FSMs (dashed curves) for the core region in an EC-CHF with ξ = 0.65 . FSM e y and FSM e x correspond to the slow and fast FSMs of elliptical-hole lattice, respectively. The cutoff frequency is indicated on the horizontal axis by an arrow.

Fig. 6
Fig. 6

Intensity distributions of the slow mode for an EC-CHF with ξ = 0.65 at Λ λ = 0.8 .

Fig. 7
Fig. 7

Chromatic dispersion for an EC-CHF of Fig. 5. Solid curve, total dispersion D T . Dashed curve, material dispersion D M . The cutoff wavelength λ c is indicated by an arrow.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D T = λ c d 2 n eff d λ 2 ,

Metrics