Abstract

We present a new snapshot technique for performing spectrally resolved Mueller matrix polarimetry. The basic approach is an extension of the channeled spectropolarimetry technique, employing frequency-domain interferometry to encode polarization information into modulation of the spectrum.

© 2007 Optical Society of America

Full Article  |  PDF Article

Errata

Nathan Hagen, Kazuhiko Oka, and Eustace L. Dereniak, "Snapshot Mueller matrix spectropolarimeter: erratum," Opt. Lett. 38, 1675-1675 (2013)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-38-10-1675

References

  • View by:
  • |
  • |

  1. D. H. Goldstein, Appl. Opt. 31, 6676 (1992).
    [CrossRef] [PubMed]
  2. L. Jin, K. Takizawa, Y. Otani, and N. Umeda, Opt. Rev. 12, 281 (2005).
    [CrossRef]
  3. K. Oka and T. Kato, Opt. Lett. 24, 1475 (1999).
    [CrossRef]
  4. T. Wakayama, Y. Otani, and N. Umeda, Proc. SPIE 5888 (2005).
  5. H. Okabe, M. Hayakawa, H. Naito, A. Taniguchi, and K. Oka, Opt. Express 15, 3093 (2007).
    [CrossRef] [PubMed]
  6. R. M. A. Azzam, Opt. Lett. 2, 148 (1978).
    [CrossRef] [PubMed]

2007

2005

L. Jin, K. Takizawa, Y. Otani, and N. Umeda, Opt. Rev. 12, 281 (2005).
[CrossRef]

T. Wakayama, Y. Otani, and N. Umeda, Proc. SPIE 5888 (2005).

1999

1992

1978

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Basic layout of the snapshot Mueller matrix spectropolarimeter. Retarders 1 and 4 have their fast axes oriented at 45 ° , retarders 2 and 3 at 0 ° . Polarizers 1 and 2 both have their transmission axes oriented at 0 ° . CHSP, channeled spectropolarimeter.

Fig. 2
Fig. 2

Fourier domain, 37 channels C n .

Fig. 3
Fig. 3

Simulated measurement of an achromatic polymer retarder using a snapshot Mueller matrix polarimeter. Upper figure: the Fourier-domain representation of the measured spectrum. Lower figure: the retardance δ ( σ ) and orientation angle θ ( σ ) of the sample reconstructed from the measured Mueller matrix elements. The error bars are obtained from the standard deviation of data taken over 100 instances of Poisson noise.

Tables (2)

Tables Icon

Table 1 Fourier-Domain Channels C n Encoding the Mueller Matrix Elements for the 1-2-5-10 Configuration a

Tables Icon

Table 2 Spectrally Resolved Mueller Matrix Elements m i j ( σ ) Obtained by Operating on Spectral-Domain Channels c n a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s out ( σ ) = P 2 ( 0 ° ) R 4 ( 45 ° , δ 4 ) R 3 ( 0 ° , δ 3 ) M × R 2 ( 0 ° , δ 2 ) R 1 ( 45 ° , δ 1 ) P 1 ( 0 ° ) s in ( σ ) .
I ( σ ) = s in , 0 ( σ ) 4 ( m 00 + m 01 cos δ 1 + m 02 cos δ 1 sin δ 2 ) + m 03 cos δ 2 sin δ 1 + m 10 cos δ 4 + m 11 cos δ 1 cos δ 4 + m 12 sin δ 1 sin δ 2 cos δ 4 + m 13 sin δ 1 cos δ 2 cos δ 4 + m 20 sin δ 3 sin δ 4 + m 21 cos δ 1 sin δ 3 sin δ 4 + m 22 sin δ 1 sin δ 2 sin δ 3 sin δ 4 + m 23 sin δ 1 cos δ 2 sin δ 3 sin δ 4 m 30 cos δ 3 sin δ 4 m 31 cos δ 1 cos δ 3 sin δ 4 m 32 sin δ 1 sin δ 2 cos δ 3 sin δ 4 ( m 33 sin δ 1 cos δ 2 cos δ 3 sin δ 4 ) .

Metrics