Abstract

We demonstrate efficient modification of the polarized light emission from single semiconductor nanowires by coupling this emission to surface plasmon polaritons on a metal grating. The polarization anisotropy of the emitted photoluminescence from single nanowires is compared for wires deposited on silica, a flat gold film, and a shallow gold grating. By varying the orientation of the nanowire with respect to the grating grooves, the large intrinsic polarization anisotropy can be either suppressed or enhanced. This modification is interpreted by the appearance of an additional emission channel induced by surface plasmon polaritons and their conversion to p-polarized radiation at the grating.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9, 18 (2006).
    [CrossRef]
  2. P. J. Pauzauskie and P. Yang, Mater. Today 18, 36 (2006).
    [CrossRef]
  3. J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Science 293, 1455 (2001).
    [CrossRef] [PubMed]
  4. H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, Nano Lett. 6, 229 (2006).
    [CrossRef] [PubMed]
  5. Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, Appl. Phys. Lett. 85, 6128 (2004).
    [CrossRef]
  6. O. Hayden, R. Agarwal, and C. M. Lieber, Nat. Mater. 5, 352 (2006).
    [CrossRef] [PubMed]
  7. O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, Appl. Phys. Lett. 89, 233117 (2006).
    [CrossRef]
  8. C. J. Barrelet, J. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
    [CrossRef] [PubMed]
  9. P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, Phys. Rev. Lett. 96, 143903 (2006).
    [CrossRef] [PubMed]
  10. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, Science 27, 1269 (2004).
    [CrossRef]
  11. P. Andrew and W. L. Barnes, Phys. Rev. B 64, 125405 (2001).
    [CrossRef]
  12. K. T. Shimizu, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002).
    [CrossRef] [PubMed]
  13. J. Zhang, Y.-H. Ye, X. Wang, P. Rochon, and M. Xiao, Phys. Rev. B 72, 201306 (2005).
    [CrossRef]
  14. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B 60, 11564 (1999).
    [CrossRef]
  15. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
    [CrossRef] [PubMed]
  16. J. Kalkman, C. Strohhofer, B. Gralak, and A. Polman, Appl. Phys. Lett. 83, 30 (2003).
    [CrossRef]
  17. H. E. Ruda and S. Shik, Phys. Rev. B 72, 115308 (2005).
    [CrossRef]
  18. S. C. Kitson, W. L. Barnes, and J. R. Sambles, Opt. Commun. 122, 147 (1996).
    [CrossRef]

2006 (7)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9, 18 (2006).
[CrossRef]

P. J. Pauzauskie and P. Yang, Mater. Today 18, 36 (2006).
[CrossRef]

H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, Nano Lett. 6, 229 (2006).
[CrossRef] [PubMed]

O. Hayden, R. Agarwal, and C. M. Lieber, Nat. Mater. 5, 352 (2006).
[CrossRef] [PubMed]

O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, Appl. Phys. Lett. 89, 233117 (2006).
[CrossRef]

C. J. Barrelet, J. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
[CrossRef] [PubMed]

P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Zhang, Y.-H. Ye, X. Wang, P. Rochon, and M. Xiao, Phys. Rev. B 72, 201306 (2005).
[CrossRef]

H. E. Ruda and S. Shik, Phys. Rev. B 72, 115308 (2005).
[CrossRef]

2004 (3)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, Science 27, 1269 (2004).
[CrossRef]

Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, Appl. Phys. Lett. 85, 6128 (2004).
[CrossRef]

2003 (1)

J. Kalkman, C. Strohhofer, B. Gralak, and A. Polman, Appl. Phys. Lett. 83, 30 (2003).
[CrossRef]

2002 (1)

K. T. Shimizu, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

2001 (2)

J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Science 293, 1455 (2001).
[CrossRef] [PubMed]

P. Andrew and W. L. Barnes, Phys. Rev. B 64, 125405 (2001).
[CrossRef]

1999 (1)

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B 60, 11564 (1999).
[CrossRef]

1996 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, Opt. Commun. 122, 147 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, Appl. Phys. Lett. 85, 6128 (2004).
[CrossRef]

O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, Appl. Phys. Lett. 89, 233117 (2006).
[CrossRef]

J. Kalkman, C. Strohhofer, B. Gralak, and A. Polman, Appl. Phys. Lett. 83, 30 (2003).
[CrossRef]

Mater. Today (2)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9, 18 (2006).
[CrossRef]

P. J. Pauzauskie and P. Yang, Mater. Today 18, 36 (2006).
[CrossRef]

Nano Lett. (2)

C. J. Barrelet, J. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11 (2006).
[CrossRef] [PubMed]

H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, Nano Lett. 6, 229 (2006).
[CrossRef] [PubMed]

Nat. Mater. (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef] [PubMed]

O. Hayden, R. Agarwal, and C. M. Lieber, Nat. Mater. 5, 352 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, Opt. Commun. 122, 147 (1996).
[CrossRef]

Phys. Rev. B (4)

H. E. Ruda and S. Shik, Phys. Rev. B 72, 115308 (2005).
[CrossRef]

P. Andrew and W. L. Barnes, Phys. Rev. B 64, 125405 (2001).
[CrossRef]

J. Zhang, Y.-H. Ye, X. Wang, P. Rochon, and M. Xiao, Phys. Rev. B 72, 201306 (2005).
[CrossRef]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B 60, 11564 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

K. T. Shimizu, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef] [PubMed]

Science (2)

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, Science 27, 1269 (2004).
[CrossRef]

J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Science 293, 1455 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Photoluminescence spectra of a single InP nanowire on silica for polarizations of the excitation light parallel (solid line) and perpendicular (dashed line) to the nanowire axis. (b) Spectra of the same wire excited with a polarization parallel to its axis and detected with a polarization parallel (solid line) and perpendicular (dashed line). (c) and (d) Distributions of the absorption and emission anisotropy ratios of 25 single InP nanowires on a silica substrate.

Fig. 2
Fig. 2

(a) Angle-dependent, p-polarized reflectivity from a gold grating, showing coupling of light to SPPs (dark regions). (b) and (c) SEM images of individual nanowires aligned parallel (b) and perpendicular (c) to the grooves of a gold grating. (d) Image of the photoluminescence of a nanowire on a gold grating.

Fig. 3
Fig. 3

Distributions of the emission anisotropy ratio η em for nanowires deposited on a gold grating with their axes parallel to the grooves (a), and on a grating perpendicular to the grooves (b) (Configurations drawn as inset).

Fig. 4
Fig. 4

Normalized emission anisotropies as a function of collection angle for single nanowires parallel to the grooves of a d = 480 nm grating (circles), parallel to the grooves of a d = 630 nm grating (triangles), and on a planar gold film (diamonds). The lines are guides for the eyes. Inset: schematic drawing of the reradiation of SPP for the two grating periods.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k 0 sin θ + n G = ± k SPP ,

Metrics