Abstract

We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO2 laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8nm°C, and the tuning range can be wider than 105nm (15451650nm).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Z. Gu, Y. Xu, and K. Gao, Opt. Lett. 31, 2405 (2006).
    [CrossRef] [PubMed]
  2. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, Opt. Lett. 21, 336 (1996).
    [CrossRef] [PubMed]
  3. H. J. Patrick, A. D. Kersey, and F. Bucholtz, J. Lightwave Technol. 16, 1606 (1998).
    [CrossRef]
  4. Y. Zhu, P. Shum, J. H. Chong, M. K. Rao, and C. Lu, Opt. Lett. 28, 2467 (2003).
    [CrossRef] [PubMed]
  5. Y. Zhu, P. Shum, X. Chen, C. H. Tan, and C. Lu, Opt. Lett. 30, 1788 (2005).
    [CrossRef] [PubMed]
  6. T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, IEEE Photon. Technol. Lett. 10, 1449 (1998).
    [CrossRef]
  7. K. W. Chung and S. Yin, Opt. Lett. 29, 812 (2004).
    [CrossRef] [PubMed]
  8. X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 13, 818 (2001).
    [CrossRef]
  9. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Epsindola, A. Hale, R. S. Windeler, and T. A. Strasser, IEEE Photon. Technol. Lett. 11, 445 (1999).
    [CrossRef]
  10. C. G. Atherton, A. L. Steele, and J. H. Hoad, IEEE Photon. Technol. Lett. 12, 65 (2000).
    [CrossRef]
  11. P. Steinvurzel, E. D. Moore, E. C. Magil, and B. J. Eggleton, Opt. Lett. 31, 2103 (2006).
    [CrossRef] [PubMed]
  12. I. D. Villar, I. R. Matias, and F. J. Arregui, Opt. Express 13, 56 (2005).
    [CrossRef] [PubMed]
  13. N. K. Chen, S. Chi, and S. M. Tseng, Opt. Express 13, 7250 (2005).
    [CrossRef] [PubMed]
  14. Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, Appl. Phys. Lett. 89, 151105 (2006).
    [CrossRef]

2006 (3)

2005 (3)

2004 (1)

2003 (1)

2001 (1)

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 13, 818 (2001).
[CrossRef]

2000 (1)

C. G. Atherton, A. L. Steele, and J. H. Hoad, IEEE Photon. Technol. Lett. 12, 65 (2000).
[CrossRef]

1999 (1)

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Epsindola, A. Hale, R. S. Windeler, and T. A. Strasser, IEEE Photon. Technol. Lett. 11, 445 (1999).
[CrossRef]

1998 (2)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, IEEE Photon. Technol. Lett. 10, 1449 (1998).
[CrossRef]

H. J. Patrick, A. D. Kersey, and F. Bucholtz, J. Lightwave Technol. 16, 1606 (1998).
[CrossRef]

1996 (1)

Appl. Phys. Lett. (1)

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, Appl. Phys. Lett. 89, 151105 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 13, 818 (2001).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Epsindola, A. Hale, R. S. Windeler, and T. A. Strasser, IEEE Photon. Technol. Lett. 11, 445 (1999).
[CrossRef]

C. G. Atherton, A. L. Steele, and J. H. Hoad, IEEE Photon. Technol. Lett. 12, 65 (2000).
[CrossRef]

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, IEEE Photon. Technol. Lett. 10, 1449 (1998).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectral responses of the growing LPFG illuminated by a pulsed CO 2 laser. Inset, transmission spectra over 1250 1650 nm .

Fig. 2
Fig. 2

Spectral responses of the LPFG at different heating temperatures. The grating pitch is 650 μ m , and the ablated depth is around 36 μ m .

Fig. 3
Fig. 3

Spectral responses of the LPFG with an OCF-446 optical polymer overlay at different heating temperatures. (a) The resonant wavelength blueshifts with increasing temperature and stops at 31 ° C . (b)–(d) The resonant wavelength P 1 redshifts linearly when T > 34 ° C .

Fig. 4
Fig. 4

Resonant wavelengths change with varying heating temperature. The tuning efficiency η of the resonant wavelength P 1 is 15.8 nm ° C when the temperature is higher than 34 ° C .

Metrics