Abstract

Single-mode–multimode–single-mode (SMS) fiber structures have been demonstrated to be a simple and effective way to realize multimode interference (MMI) in optical fibers. The temperature dependence of the spectral characteristics of SMS devices is investigated. By utilizing the feature that the response spectra of SMS devices with opposite polarities to temperature and axial tensile strain, I demonstrate that temperature compensation of SMS devices can be realized by using materials with a proper coefficient of thermal expansion. A temperature stability of 1.0pm°C has been experimentally demonstrated with a ceramic as the packaging material.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mackie and A. W. Lee, Appl. Opt. 43, 6609 (2004).
    [CrossRef]
  2. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
    [CrossRef]
  3. M. Takenaka and Y. Nakano, IEEE Photon. Technol. Lett. 15, 1035 (2003).
    [CrossRef]
  4. C. Sookdhis, T. Mei, and H. S. Djie, IEEE Photon. Technol. Lett. 17, 822 (2005).
    [CrossRef]
  5. W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 17, 2547 (2006).
    [CrossRef]
  6. Q. Wang and G. Farrell, Microwave Opt. Technol. Lett. 48, 900 (2006).
    [CrossRef]
  7. A. Kumar, R. K. Varshney, S. Antony C., and P. Sharma, Opt. Commun. 219, 215 (2003).
    [CrossRef]
  8. A. Kumar, R. K. Varshney, and R. Kumar, Opt. Commun. 232, 239 (2004).
    [CrossRef]
  9. W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004).
    [CrossRef]
  10. E. B. Li, X. L. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
    [CrossRef]
  11. R. M. Measures, Structural Monitoring with Fiber Optic Technology (Academic, 2001), pp. 263-324.

2006 (3)

W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 17, 2547 (2006).
[CrossRef]

Q. Wang and G. Farrell, Microwave Opt. Technol. Lett. 48, 900 (2006).
[CrossRef]

E. B. Li, X. L. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

2005 (1)

C. Sookdhis, T. Mei, and H. S. Djie, IEEE Photon. Technol. Lett. 17, 822 (2005).
[CrossRef]

2004 (3)

2003 (2)

A. Kumar, R. K. Varshney, S. Antony C., and P. Sharma, Opt. Commun. 219, 215 (2003).
[CrossRef]

M. Takenaka and Y. Nakano, IEEE Photon. Technol. Lett. 15, 1035 (2003).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Antony C., S.

A. Kumar, R. K. Varshney, S. Antony C., and P. Sharma, Opt. Commun. 219, 215 (2003).
[CrossRef]

Djie, H. S.

C. Sookdhis, T. Mei, and H. S. Djie, IEEE Photon. Technol. Lett. 17, 822 (2005).
[CrossRef]

Farrell, G.

Q. Wang and G. Farrell, Microwave Opt. Technol. Lett. 48, 900 (2006).
[CrossRef]

Gu, X.

W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 17, 2547 (2006).
[CrossRef]

Johnson, E. G.

Kumar, A.

A. Kumar, R. K. Varshney, and R. Kumar, Opt. Commun. 232, 239 (2004).
[CrossRef]

A. Kumar, R. K. Varshney, S. Antony C., and P. Sharma, Opt. Commun. 219, 215 (2003).
[CrossRef]

Kumar, R.

A. Kumar, R. K. Varshney, and R. Kumar, Opt. Commun. 232, 239 (2004).
[CrossRef]

Lee, A. W.

Li, E. B.

E. B. Li, X. L. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Mackie, D. M.

Measures, R. M.

R. M. Measures, Structural Monitoring with Fiber Optic Technology (Academic, 2001), pp. 263-324.

Mehta, A.

Mei, T.

C. Sookdhis, T. Mei, and H. S. Djie, IEEE Photon. Technol. Lett. 17, 822 (2005).
[CrossRef]

Mohammed, W. S.

W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 17, 2547 (2006).
[CrossRef]

W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004).
[CrossRef]

Nakano, Y.

M. Takenaka and Y. Nakano, IEEE Photon. Technol. Lett. 15, 1035 (2003).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Sharma, P.

A. Kumar, R. K. Varshney, S. Antony C., and P. Sharma, Opt. Commun. 219, 215 (2003).
[CrossRef]

Smith, P. W. E.

W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 17, 2547 (2006).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Sookdhis, C.

C. Sookdhis, T. Mei, and H. S. Djie, IEEE Photon. Technol. Lett. 17, 822 (2005).
[CrossRef]

Takenaka, M.

M. Takenaka and Y. Nakano, IEEE Photon. Technol. Lett. 15, 1035 (2003).
[CrossRef]

Varshney, R. K.

A. Kumar, R. K. Varshney, and R. Kumar, Opt. Commun. 232, 239 (2004).
[CrossRef]

A. Kumar, R. K. Varshney, S. Antony C., and P. Sharma, Opt. Commun. 219, 215 (2003).
[CrossRef]

Wang, Q.

Q. Wang and G. Farrell, Microwave Opt. Technol. Lett. 48, 900 (2006).
[CrossRef]

Wang, X. L.

E. B. Li, X. L. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Zhang, C.

E. B. Li, X. L. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. B. Li, X. L. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Takenaka and Y. Nakano, IEEE Photon. Technol. Lett. 15, 1035 (2003).
[CrossRef]

C. Sookdhis, T. Mei, and H. S. Djie, IEEE Photon. Technol. Lett. 17, 822 (2005).
[CrossRef]

J. Lightwave Technol. (2)

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

Q. Wang and G. Farrell, Microwave Opt. Technol. Lett. 48, 900 (2006).
[CrossRef]

Opt. Commun. (2)

A. Kumar, R. K. Varshney, S. Antony C., and P. Sharma, Opt. Commun. 219, 215 (2003).
[CrossRef]

A. Kumar, R. K. Varshney, and R. Kumar, Opt. Commun. 232, 239 (2004).
[CrossRef]

Opt. Lett. (1)

W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 17, 2547 (2006).
[CrossRef]

Other (1)

R. M. Measures, Structural Monitoring with Fiber Optic Technology (Academic, 2001), pp. 263-324.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of a SMS fiber device and a structure for its temperature compensation.

Fig. 2
Fig. 2

Measured transmission spectrum of a SMS fiber structure with a 50 mm long MMF.

Fig. 3
Fig. 3

Measured wavelength shifts at different temperatures with four packaging materials.

Tables (1)

Tables Icon

Table 1 Material Types and Parameters for Temperature Compensation of SMS Fiber Devices

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ λ 1 λ = ( α 1 + ξ ) Δ T ,
Δ λ 2 λ = [ 1 n c o Δ n c o + 2 a Δ a 1 L Δ L ] T ,
Δ n c o n c o = n c o 2 2 [ p 12 ν ( p 11 + p 12 ) ] ε = p e ε ,
Δ λ 2 λ = ( 1 + 2 ν + p e ) ε .
Δ λ = Δ λ 1 + Δ λ 2 = λ [ ( α 1 + ξ ) Δ T ( 1 + 2 ν + p e ) ε ] .
ε = ( α 2 α 1 ) Δ T .
Δ λ = λ [ ( α 1 + ξ ) ( 1 + 2 ν + p e ) ( α 2 α 1 ) ] Δ T .
α 2 = α 1 + ( α 1 + ξ ) ( 1 + 2 ν + p e ) .

Metrics