Abstract

Continuum generation from normally dispersive ultrahigh-numerical-aperture fibers deteriorates in relatively short times, limiting its application as a practical optical source for high-resolution optical coherence tomography. We find that reversible light-induced structural modification of fiber optic materials, rather than permanent optical damage, is responsible for this deterioration. By examining how the optical properties of corresponding light-induced waveguides depend on pumping wavelength, we isolate a waveguide that is beneficial for stable continuum generation. The performance deterioration due to the formation of other waveguides can be reversed by overwriting them with this particular waveguide.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  2. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  3. Y. Wang, I. Tomov, J. S. Nelson, Z. Chen, H. Lim, and F. Wise, J. Opt. Soc. Am. A 22, 1492 (2005).
    [CrossRef]
  4. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, Opt. Lett. 27, 2010 (2002).
    [CrossRef]
  5. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, Opt. Express 11, 3290 (2003).
    [CrossRef] [PubMed]
  6. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 29, 2846 (2004).
    [CrossRef]
  7. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, Opt. Express 14, 1596 (2006).
    [CrossRef] [PubMed]
  8. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  9. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, Opt. Lett. 28, 1218 (2003).
    [CrossRef] [PubMed]
  10. T. M. Lee, F. J. Toublan, S. Sitafalwalla, A. L. Oldenburg, K. S. Suslick, and S. A. Boppart, Opt. Lett. 28, 1546 (2003).
    [CrossRef] [PubMed]
  11. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, Opt. Lett. 29, 1647 (2004).
    [CrossRef] [PubMed]
  12. W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, Opt. Express 14, 7159 (2006).
    [CrossRef] [PubMed]
  13. C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
    [CrossRef]
  14. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  15. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, Opt. Express 14, 11539 (2006).
    [CrossRef] [PubMed]
  16. E. G. Behrens, F. M. Durville, and R. C. Powell, Opt. Lett. 11, 653 (1986).
    [CrossRef] [PubMed]

2006 (4)

2005 (1)

2004 (2)

2003 (4)

2002 (1)

2000 (2)

1986 (1)

Aguirre, A. D.

Behrens, E. G.

Birks, T.

Birks, T. A.

Boppart, S. A.

Bourquin, S.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Breuer, E.

Bunting, U.

Chen, Y.

Chen, Z.

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Desai, T. A.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Durville, F. M.

Fujimoto, J. G.

Gillette, R.

Hartl, I.

Hoffman, H. J.

Hsiung, P.

Humbert, G.

Ippen, E. P.

Knight, J.

Ko, T. H.

Kopf, D.

Koponen, J. J.

Lazebnik, M.

Lederer, M.

Lee, T. M.

Leon-Saval, S.

Lim, H.

Luo, W.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

Marks, D. L.

Nelson, J. S.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Nishizawa, N.

Norman, J. J.

Oldenburg, A. L.

Potgieter, K.

Powell, R. C.

Ralston, T.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

Ranka, J. K.

Reynolds, J. J.

Russell, P. S. J.

Russell, P. St. J.

Sitafalwalla, S.

Söderlund, M. J.

Stentz, A. J.

Stifter, D.

Suslick, K. S.

Tammela, S. K. T.

Tan, W.

W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, Opt. Express 14, 7159 (2006).
[CrossRef] [PubMed]

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

Tomov, I.

Toublan, F. J.

Vinegoni, C.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

Wadsworth, W.

Wadsworth, W. J.

Wang, Y.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Wiesauer, K.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
[CrossRef]

Wise, F.

Xu, C.

Ye, J.

Appl. Phys. Lett. (1)

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (4)

Opt. Lett. (8)

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Output power from a freshly cleaved UHNA3 fiber as a function of input power for several pumping wavelengths.

Fig. 2
Fig. 2

(a) CES of a UHNA3 fiber when freshly prepared, light treated ( 800 nm , 400 mW , 1 h ), and flame recovered; (b) CES of a second UHNA3 fiber when freshly prepared, light treated ( 910 nm , 500 mW , 8 h ), and flame recovered; (c) CES of a UHNA4 fiber when freshly prepared, light treated ( 910 nm , 500 mW , 0.5 h ), and flame recovered; (d) CES of a third UHNA3 fiber when freshly prepared, light treated ( 800 nm , 400 mW , 1 h ), and light recovered ( 910 nm , 600 mW , 3 h ).

Fig. 3
Fig. 3

(a) Comparison of the input and output spectrum from a freshly prepared UHNA3 fiber and the output spectrum after light treatment ( 800 nm , 400 mW , 1 h ); (b) broadband continuum generation from a light-pretreated ( 910 nm , 900 mW , 1 h ) UHNA3 fiber with tunable center wavelength across 800 910 nm ; (c) continuum generation from the light-pretreated fiber with bandwith tunable by adjusting the input power.

Metrics