Abstract

Coherent optical vortices are generated from ultrashort 6.4fs pulses. Our results demonstrate angular dispersion compensation of ultrashort 6.4fs Laguerre–Gaussian (LG) pulses as well as what is believed to be the first direct autocorrelation measurement of 80fs LG amplified pulses. A reflective-mirror-based 4f-compressor is proposed to compensate the angular and group velocity dispersion of the ultrashort LG pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. J. Padgett, and M. Babiker, Progress in Optics Volume XXXIX (Elsevier, 1999), p. 291.
    [CrossRef]
  2. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
    [CrossRef] [PubMed]
  3. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, and H. Walther, Opt. Lett. 29, 1942 (2004).
    [CrossRef] [PubMed]
  4. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, Opt. Express 13, 7599 (2005).
    [CrossRef] [PubMed]
  5. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, H. Walther, D. Neshev, W. Krolikowski, and Y. Kivshar, J. Opt. Soc. Am. B 23, 26 (2006).
    [CrossRef]
  6. H. I. Sztul, V. Kartazayev, and R. R. Alfano, Opt. Lett. 31, 2725 (2006).
    [CrossRef] [PubMed]
  7. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, J. Mol. Spectrosc. 45, 6 (1998).
  8. O. E. Martinez, IEEE J. Quantum Electron. QE-24, 2530 (1988).
    [CrossRef]
  9. C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, IEEE J. Quantum Electron. 30, 1662 (1994).
    [CrossRef]

2006 (2)

2005 (1)

2004 (1)

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

1998 (1)

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, J. Mol. Spectrosc. 45, 6 (1998).

1994 (1)

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, IEEE J. Quantum Electron. 30, 1662 (1994).
[CrossRef]

1988 (1)

O. E. Martinez, IEEE J. Quantum Electron. QE-24, 2530 (1988).
[CrossRef]

Alfano, R. R.

Allen, L.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, J. Mol. Spectrosc. 45, 6 (1998).

L. Allen, M. J. Padgett, and M. Babiker, Progress in Optics Volume XXXIX (Elsevier, 1999), p. 291.
[CrossRef]

Arlt, J.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, J. Mol. Spectrosc. 45, 6 (1998).

Babiker, M.

L. Allen, M. J. Padgett, and M. Babiker, Progress in Optics Volume XXXIX (Elsevier, 1999), p. 291.
[CrossRef]

Bezuhanov, K.

Blanchot, N.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, IEEE J. Quantum Electron. 30, 1662 (1994).
[CrossRef]

Dholakia, K.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, J. Mol. Spectrosc. 45, 6 (1998).

Dreischuh, A.

Fiorini, C.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, IEEE J. Quantum Electron. 30, 1662 (1994).
[CrossRef]

Kartazayev, V.

Kivshar, Y.

Krolikowski, W.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Mariyenko, I. G.

Martinez, O. E.

O. E. Martinez, IEEE J. Quantum Electron. QE-24, 2530 (1988).
[CrossRef]

Migus, A.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, IEEE J. Quantum Electron. 30, 1662 (1994).
[CrossRef]

Neshev, D.

Padgett, M. J.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, J. Mol. Spectrosc. 45, 6 (1998).

L. Allen, M. J. Padgett, and M. Babiker, Progress in Optics Volume XXXIX (Elsevier, 1999), p. 291.
[CrossRef]

Paulus, G. G.

Rouyer, C.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, IEEE J. Quantum Electron. 30, 1662 (1994).
[CrossRef]

Sauteret, C.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, IEEE J. Quantum Electron. 30, 1662 (1994).
[CrossRef]

Schätzel, M. G.

Seznec, S.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, IEEE J. Quantum Electron. 30, 1662 (1994).
[CrossRef]

Strohaber, J.

Sztul, H. I.

Uiterwaal, C. J. G. J.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Walther, H.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

O. E. Martinez, IEEE J. Quantum Electron. QE-24, 2530 (1988).
[CrossRef]

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, IEEE J. Quantum Electron. 30, 1662 (1994).
[CrossRef]

J. Mol. Spectrosc. (1)

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, J. Mol. Spectrosc. 45, 6 (1998).

J. Opt. Soc. Am. B (1)

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

L. Allen, M. J. Padgett, and M. Babiker, Progress in Optics Volume XXXIX (Elsevier, 1999), p. 291.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup to generate LG pulses with angular and group velocity dispersion compensation: CGH, computer-generated hologram; λ 1 and λ 2 , laser spectrum wavelengths; M, plane mirror; AL, achromatic lens; AC, autocorrelator. The CGH is shown in the inset.

Fig. 2
Fig. 2

4 f setup with concave mirror. SM, spherical mirror.

Fig. 3
Fig. 3

Left, gray-scale images of a LG beam for 6.4 fs laser pulses: (a) no 4 f setup is used and (b) with the 4 f setup. Right, intensities in arbitrary units for the vertical cross sections. Experimental (c) and theoretical (d) interference patterns of l = + 3 and l = 3 LG beams after angular dispersion compensation, verifying the phase structure of the LG mode. y x directions are the CCD camera vertical and horizontal imaging directions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H ( r , θ ) = 1 2 π mod ( l θ 2 π Λ r cos θ , 2 π ) ,
d 2 ϕ d ω 2 = 2 L λ 2 ω c ( d 2 n d λ 2 ) 2 f a λ 2 c ω d 2 cos 2 θ ,
d 2 ϕ p d ω 2 = d 2 ϕ d ω 2 ,
Δ T ( 2 ) = 1 2 d 3 ϕ d ω 3 Δ ω 2 ,
d 3 ϕ d ω 3 = 3 f a λ 2 c ω 2 d 2 cos 2 θ ( 3 + λ d tan θ cos θ ) .
Δ T = L λ 2 ω 2 c ( d 2 n d λ 2 ) Δ ω 2 .

Metrics