Abstract

We propose a novel semiconductor optoelectronic switch that is a fusion of a Ge optical detector and a Si metal-oxide semiconductor field-effect transistor (MOSFET). The device operation is investigated with simulations and experiments. The switch can be fabricated at the nanoscale with extremely low capacitance. This device operates in telecommunication standard wavelengths, hence providing the surrounding Si circuitry with noise immunity from signaling. The Ge gate absorbs light, and the gate photocurrent is amplified at the drain terminal. Experimental current gain of up to 1000× is demonstrated. The device exhibits increased responsivity (3.5×) and lower off-state current (4×) compared with traditional detector schemes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Cho, P. Kapur, and K. C. Saraswat, J. Lightwave Technol. 22, 2021 (2004).
    [CrossRef]
  2. H. Cho, K. Koo, P. Kapur, and K. C. Saraswat, in Proceedings of IEEE International Interconnect Technology Conference (IEEE, 2007), pp. 135-137.
  3. D. A. B. Miller, Proc. IEEE 88, 728 (2000).
    [CrossRef]
  4. Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
    [CrossRef] [PubMed]
  5. L. Tang, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, L. Hesselink, and D. A. B. Miller, Opt. Lett. 31, 1519 (2006).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
[CrossRef] [PubMed]

2004 (1)

2000 (1)

D. A. B. Miller, Proc. IEEE 88, 728 (2000).
[CrossRef]

Cho, H.

H. Cho, P. Kapur, and K. C. Saraswat, J. Lightwave Technol. 22, 2021 (2004).
[CrossRef]

H. Cho, K. Koo, P. Kapur, and K. C. Saraswat, in Proceedings of IEEE International Interconnect Technology Conference (IEEE, 2007), pp. 135-137.

Ge, Y.

Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
[CrossRef] [PubMed]

Harris, J. S.

Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
[CrossRef] [PubMed]

Hesselink, L.

Kamins, T. I.

Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
[CrossRef] [PubMed]

Kapur, P.

H. Cho, P. Kapur, and K. C. Saraswat, J. Lightwave Technol. 22, 2021 (2004).
[CrossRef]

H. Cho, K. Koo, P. Kapur, and K. C. Saraswat, in Proceedings of IEEE International Interconnect Technology Conference (IEEE, 2007), pp. 135-137.

Koo, K.

H. Cho, K. Koo, P. Kapur, and K. C. Saraswat, in Proceedings of IEEE International Interconnect Technology Conference (IEEE, 2007), pp. 135-137.

Kuo, Y.-H.

Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
[CrossRef] [PubMed]

Lee, Y.

Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
[CrossRef] [PubMed]

Matteo, J. A.

Miller, D. A. B.

L. Tang, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, L. Hesselink, and D. A. B. Miller, Opt. Lett. 31, 1519 (2006).
[CrossRef] [PubMed]

Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
[CrossRef] [PubMed]

D. A. B. Miller, Proc. IEEE 88, 728 (2000).
[CrossRef]

Okyay, A. K.

Ren, S.

Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
[CrossRef] [PubMed]

Roth, J. E.

Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
[CrossRef] [PubMed]

Saraswat, K. C.

Tang, L.

Yuen, Y.

J. Lightwave Technol. (1)

Nature (1)

Y.-H. Kuo, Y. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. IEEE (1)

D. A. B. Miller, Proc. IEEE 88, 728 (2000).
[CrossRef]

Other (1)

H. Cho, K. Koo, P. Kapur, and K. C. Saraswat, in Proceedings of IEEE International Interconnect Technology Conference (IEEE, 2007), pp. 135-137.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the OE-MOSFET. Source/drain and channel regions are formed in Si. The Ge gate is deposited on thermally grown Si O 2 . Absorption takes place in the gate. Si is transparent, and hence is noise immune.

Fig. 2
Fig. 2

Energy band diagram of the Ge Si O 2 Si stack. Band bending under equilibrium and steady state illumination are shown by solid and dotted curves, respectively. In the case illustrated here, optically generated holes accumulate at the Ge Si O 2 interface, while the electrons are swept out of the gate terminal and flow to the Si O 2 Si interface inducing a channel.

Fig. 3
Fig. 3

Measured high-frequency ( 100 kHz ) C TOTAL V GATE for 3.5 nm -thick Si O 2 . Due to experimental difficulties, visible light is used in measurements. Si also absorbs at this wavelength, and hence Si depletion capacitance, dominant for V GATE > 0 , is also modulated.

Fig. 4
Fig. 4

(a) Simulated I DRAIN V DRAIN results of a 1 μ m gate length transistor with n-doped Ge ( 10 16 cm 3 ) and p-doped Si ( 10 18 cm 3 ) . Incident light ( 1 μ W μ m 2 in this case) constitutes a gate signal. (b) I DRAIN V GATE characteristics of the same OE-MOSFET.

Fig. 5
Fig. 5

Measured photocurrent at the gate and drain terminals for V GATE = V DRAIN . The absorbed light in the Ge gate modulate the conductivity of the Si channel. The gate current is amplified by the transistor at the drain terminal, I DRAIN .

Fig. 6
Fig. 6

Simulated transient response comparing a classical detector and the proposed device. The input is a pulse train, each pulse delivering 1 f J optical energy. The OE-MOSFET has significantly enhanced responsivity and lower off-state leakage.

Metrics