Abstract

A space-variant polarization converting element is introduced that utilizes an autocloning effect to produce high aspect ratio from birefringent gratings. This method utilizes a multilayer deposition process on a template to convert a linearly polarized incident beam to an azimuthally polarized output at a wavelength of 1.55μm with more than 90% efficiency.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Levy, C.-H. Tsai, L. Pang, and Y. Fainman, Opt. Lett. 29, 1718 (2004).
    [CrossRef] [PubMed]
  2. A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 28, 510 (2003).
    [CrossRef] [PubMed]
  3. G. Biener, A. Niv, V. Kleiner, and E. Hasman, J. Opt. Soc. Am. A 20, 1940 (2003).
    [CrossRef]
  4. W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
    [CrossRef]
  5. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Kawashima, and S. Kawakami, J. Korean Phys. Soc. 39, 429 (2001).
  6. S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, Electron. Commun. Jpn. Part 2 82, 573 (1999).
  7. S. Kawakami, T. Kawashima, and T. Sato, Appl. Phys. Lett. 74, 463 (1999).
    [CrossRef]
  8. R. C. Rumpf, "Design and optimization of nano-optical elements by coupling fabrication to optical behavior," Ph.D. dissertation (University of Central Florida, 2006), pp. 109-124.

2006 (1)

R. C. Rumpf, "Design and optimization of nano-optical elements by coupling fabrication to optical behavior," Ph.D. dissertation (University of Central Florida, 2006), pp. 109-124.

2005 (1)

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

2004 (1)

2003 (2)

2001 (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Kawashima, and S. Kawakami, J. Korean Phys. Soc. 39, 429 (2001).

1999 (2)

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, Electron. Commun. Jpn. Part 2 82, 573 (1999).

S. Kawakami, T. Kawashima, and T. Sato, Appl. Phys. Lett. 74, 463 (1999).
[CrossRef]

Biener, G.

Fainman, Y.

Hanaizumi, O.

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, Electron. Commun. Jpn. Part 2 82, 573 (1999).

Hasman, E.

Ishino, N.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Kawashima, and S. Kawakami, J. Korean Phys. Soc. 39, 429 (2001).

Johnson, E. G.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Kawakami, S.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Kawashima, and S. Kawakami, J. Korean Phys. Soc. 39, 429 (2001).

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, Electron. Commun. Jpn. Part 2 82, 573 (1999).

S. Kawakami, T. Kawashima, and T. Sato, Appl. Phys. Lett. 74, 463 (1999).
[CrossRef]

Kawashima, T.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Kawashima, and S. Kawakami, J. Korean Phys. Soc. 39, 429 (2001).

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, Electron. Commun. Jpn. Part 2 82, 573 (1999).

S. Kawakami, T. Kawashima, and T. Sato, Appl. Phys. Lett. 74, 463 (1999).
[CrossRef]

Kleiner, V.

Levy, U.

Mehta, A.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Miura, K.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Kawashima, and S. Kawakami, J. Korean Phys. Soc. 39, 429 (2001).

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, Electron. Commun. Jpn. Part 2 82, 573 (1999).

Mohammed, W. S.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Niv, A.

Ohtera, Y.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Kawashima, and S. Kawakami, J. Korean Phys. Soc. 39, 429 (2001).

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, Electron. Commun. Jpn. Part 2 82, 573 (1999).

Pang, L.

Pitchumani, M.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Rumpf, R. C.

R. C. Rumpf, "Design and optimization of nano-optical elements by coupling fabrication to optical behavior," Ph.D. dissertation (University of Central Florida, 2006), pp. 109-124.

Sato, T.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Kawashima, and S. Kawakami, J. Korean Phys. Soc. 39, 429 (2001).

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, Electron. Commun. Jpn. Part 2 82, 573 (1999).

S. Kawakami, T. Kawashima, and T. Sato, Appl. Phys. Lett. 74, 463 (1999).
[CrossRef]

Takei, Y.

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, Electron. Commun. Jpn. Part 2 82, 573 (1999).

Tsai, C.-H.

Yasuda, N.

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, Electron. Commun. Jpn. Part 2 82, 573 (1999).

Appl. Phys. Lett. (1)

S. Kawakami, T. Kawashima, and T. Sato, Appl. Phys. Lett. 74, 463 (1999).
[CrossRef]

Electron. Commun. Jpn. Part 2 (1)

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, Electron. Commun. Jpn. Part 2 82, 573 (1999).

IEEE Photon. Technol. Lett. (1)

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

J. Korean Phys. Soc. (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Kawashima, and S. Kawakami, J. Korean Phys. Soc. 39, 429 (2001).

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Other (1)

R. C. Rumpf, "Design and optimization of nano-optical elements by coupling fabrication to optical behavior," Ph.D. dissertation (University of Central Florida, 2006), pp. 109-124.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Birefringence of SPACE device in terms of film thicknesses and longitudinal duty cycle. (b) Device concept for space-variant optical transmission filter.

Fig. 2
Fig. 2

(a) SEM image of top surface of Si O 2 template. (b) SEM image of top surface of SPACE device demonstrating triangular topography.

Fig. 3
Fig. 3

Azimuthally polarized output beam from SPACE device with incident linearly polarized beam.

Metrics